SHOGUN  5.0.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules
NeuralLayers.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014, Shogun Toolbox Foundation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7 
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its
16  * contributors may be used to endorse or promote products derived from this
17  * software without specific prior written permission.
18 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Written (W) 2014 Khaled Nasr
32  */
33 
35 
42 
43 using namespace shogun;
44 
46 {
47 }
48 
50 {
51  SG_UNREF(m_layers)
52 }
53 
55 {
56  return with_layer(new CNeuralInputLayer(size));
57 }
58 
60 {
61  return with_layer(new CNeuralLogisticLayer(size));
62 }
63 
65 {
66  return with_layer(new CNeuralLinearLayer(size));
67 }
68 
70 {
71  return with_layer(new CNeuralRectifiedLinearLayer(size));
72 }
73 
75 {
77 }
78 
80 {
81  return with_layer(new CNeuralSoftmaxLayer(size));
82 }
83 
85 {
86  m_layers->push_back(layer);
87  return this;
88 }
89 
91 {
92  SG_REF(m_layers);
93  return m_layers;
94 }
95 
97 {
98  m_layers->clear_array();
99 }
100 
102 {
103  return (m_layers->get_array_size() == 0);
104 }
105 
106 const char* CNeuralLayers::get_name() const
107 {
108  return "NeuralLayers";
109 }
CNeuralLayers * logistic(int32_t size)
Neural layer with [leaky rectified linear neurons] (http://en.wikipedia.org/wiki/Rectifier_%28neural_...
CNeuralLayers * rectified_linear(int32_t size)
Base class for neural network layers.
Definition: NeuralLayer.h:87
#define SG_REF(x)
Definition: SGObject.h:54
CNeuralLayers * input(int32_t size)
Neural layer with linear neurons, with a [softmax activation](http://en.wikipedia.org/wiki/Softmax_function) function. can be only be used as an output layer. [Cross entropy](http://en.wikipedia.org/wiki/Cross_entropy) error measure is used.
CNeuralLayers * softmax(int32_t size)
CDynamicObjectArray * done()
Class SGObject is the base class of all shogun objects.
Definition: SGObject.h:115
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
#define SG_UNREF(x)
Definition: SGObject.h:55
Represents an input layer. The layer can be either connected to all the input features that a network...
Neural layer with linear neurons, with an identity activation function. can be used as a hidden layer...
Neural layer with linear neurons, with a [logistic activation function](http://en.wikipedia.org/wiki/Logistic_function). can be used as a hidden layer or an output layer.
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
CNeuralLayers * leaky_rectified_linear(int32_t size)
CNeuralLayers * linear(int32_t size)
virtual const char * get_name() const
Neural layer with [rectified linear neurons] (http://en.wikipedia.org/wiki/Rectifier_%28neural_networ...
A class to construct neural layers.
Definition: NeuralLayers.h:55
CNeuralLayers * with_layer(CNeuralLayer *layer)

SHOGUN Machine Learning Toolbox - Documentation