[results]=sg('pr_loqo', 'Var1', Var1, 'Var2', Var2) sg('load_features', filename, feature_class, type, target[, size[, comp_features]]) sg('save_features', filename, type, target) sg('clean_features', 'TRAIN|TEST') [features]=sg('get_features', 'TRAIN|TEST') sg('add_features', 'TRAIN|TEST', features[, DNABINFILE|<ALPHABET>]) sg('add_multiple_features', 'TRAIN|TEST', repetitions, features[, DNABINFILE|<ALPHABET>]) sg('add_dotfeatures', 'TRAIN|TEST', features[, DNABINFILE|<ALPHABET>]) sg('set_features', 'TRAIN|TEST', features[, DNABINFILE|<ALPHABET>][, [from_position_list|slide_window], window size, [position_list|shift], skip) sg('set_ref_features', 'TRAIN|TEST') sg('del_last_features', 'TRAIN|TEST') sg('convert', 'TRAIN|TEST', from_class, from_type, to_class, to_type[, order, start, gap, reversed]) sg('reshape', 'TRAIN|TEST, num_feat, num_vec) sg('load_labels', filename, 'TRAIN|TARGET') sg('set_labels', 'TRAIN|TEST', labels) [labels]=sg('get_labels', 'TRAIN|TEST') sg('set_kernel_normalization', IDENTITY|AVGDIAG|SQRTDIAG|FIRSTELEMENT|VARIANCE|ZEROMEANCENTER, size[, kernel-specific parameters]) sg('set_kernel', type, size[, kernel-specific parameters]) sg('add_kernel', weight, kernel-specific parameters) sg('del_last_kernel') sg('init_kernel', 'TRAIN|TEST') sg('clean_kernel') sg('save_kernel', filename, 'TRAIN|TEST') [K]]=sg('get_kernel_matrix', ['TRAIN|TEST') sg('set_WD_position_weights', W[, 'TRAIN|TEST']) [W]=sg('get_subkernel_weights') sg('set_subkernel_weights', W) sg('set_subkernel_weights_combined', W, idx) [W]=sg('get_dotfeature_weights_combined', 'TRAIN|TEST') sg('set_dotfeature_weights_combined', W, idx) sg('set_last_subkernel_weights', W) [W]=sg('get_WD_position_weights') [W]=sg('get_last_subkernel_weights') [W]=sg('compute_by_subkernels') sg('init_kernel_optimization') [W]=sg('get_kernel_optimization') sg('delete_kernel_optimization') sg('use_diagonal_speedup', '0|1') sg('set_kernel_optimization_type', 'FASTBUTMEMHUNGRY|SLOWBUTMEMEFFICIENT') sg('set_solver', 'AUTO|CPLEX|GLPK|INTERNAL') sg('set_constraint_generator', 'LIBSVM_ONECLASS|LIBSVM_MULTICLASS|LIBSVM|SVMLIGHT|LIGHT|SVMLIGHT_ONECLASS|GPBTSVM|MPDSVM|GNPPSVM|GMNPSVM') sg('set_prior_probs', 'pos probs, neg_probs') sg('set_prior_probs_from_labels', 'labels') sg('resize_kernel_cache', size) sg('set_distance', type, data type[, distance-specific parameters]) sg('init_distance', 'TRAIN|TEST') [D]=sg('get_distance_matrix') [result]=sg('classify') [result]=sg('svm_classify') [result]=sg('classify_example', feature_vector_index) [result]=sg('svm_classify_example', feature_vector_index) [bias, weights]=sg('get_classifier', [index in case of MultiClassSVM]) [radi, centers|merge_distances, pairs]=sg('get_clustering') sg('new_svm', 'LIBSVM_ONECLASS|LIBSVM_MULTICLASS|LIBSVM|SVMLIGHT|LIGHT|LIGHT_ONECLASS|SVMLIN|GPBTSVM|MPDSVM|GNPPSVM|GMNPSVM|SUBGRADIENTSVM|WDSVMOCAS|SVMOCAS|SVMSGD|SVMBMRM|SVMPERF|KERNELPERCEPTRON|PERCEPTRON|LIBLINEAR_LR|LIBLINEAR_L2|LDA|LPM|LPBOOST|SUBGRADIENTLPM|KNN') sg('new_classifier', 'LIBSVM_ONECLASS|LIBSVM_MULTICLASS|LIBSVM|SVMLIGHT|LIGHT|LIGHT_ONECLASS|SVMLIN|GPBTSVM|MPDSVM|GNPPSVM|GMNPSVM|SUBGRADIENTSVM|WDSVMOCAS|SVMOCAS|SVMSGD|SVMBMRM|SVMPERF|KERNELPERCEPTRON|PERCEPTRON|LIBLINEAR_LR|LIBLINEAR_L2|LDA|LPM|LPBOOST|SUBGRADIENTLPM|KNN') sg('new_regression', 'SVRLIGHT|LIBSVR|KRR') sg('new_clustering', 'KMEANS|HIERARCHICAL') [filename, type]=sg('load_classifier') sg('save_classifier', filename) [number of SVMs in MultiClassSVM]=sg('get_num_svms') [bias, alphas]=sg('get_svm', [index in case of MultiClassSVM]) sg('set_svm', bias, alphas) sg('set_linear_classifier', bias, w) [objective]=sg('get_svm_objective') [objective]=sg('compute_svm_primal_objective') [objective]=sg('compute_svm_dual_objective') [objective]=sg('compute_mkl_primal_objective') [objective]=sg('compute_mkl_dual_objective') [gap]=sg('compute_relative_mkl_duality_gap') [gap]=sg('compute_absolute_mkl_duality_gap') sg('do_auc_maximization', 'auc') sg('set_perceptron_parameters', learnrate, maxiter) sg('train_classifier', [classifier-specific parameters]) sg('train_regression') sg('train_clustering') sg('svm_train', [classifier-specific parameters]) sg('svm_test') sg('svm_qpsize', size) sg('svm_max_qpsize', size) sg('svm_bufsize', size) sg('c', C1[, C2]) sg('svm_epsilon', epsilon) sg('svr_tube_epsilon', tube_epsilon) sg('svm_nu', nu) sg('mkl_parameters', weight_epsilon, C_MKL [, mkl_norm ]) sg('elasticnet_lambda', ent_lambda) sg('svm_max_train_time', max_train_time) sg('use_shrinking', enable_shrinking) sg('use_batch_computation', enable_batch_computation) sg('use_linadd', enable_linadd) sg('svm_use_bias', enable_bias) sg('mkl_use_interleaved_optimization', enable_interleaved_optimization) sg('krr_tau', tau) sg('add_preproc', preproc[, preproc-specific parameters]) sg('del_preproc') sg('attach_preproc', 'TRAIN|TEST', force) sg('clean_preproc') sg('new_hmm', N, M) sg('load_hmm', filename) sg('save_hmm', filename[, save_binary]) [p, q, a, b]=sg('get_hmm') sg('append_hmm', p, q, a, b) sg('append_model', 'filename'[, base1, base2]) sg('set_hmm', p, q, a, b) sg('set_hmm_as', POS|NEG|TEST) sg('chop', chop) sg('pseudo', pseudo) sg('load_defs', filename, init) [result]=sg('hmm_classify') sg('hmm_test', output name[, ROC filename[, neglinear[, poslinear]]]) [result]=sg('one_class_linear_hmm_classify') sg('one_class_hmm_test', output name[, ROC filename[, linear]]) [result]=sg('one_class_hmm_classify') [result]=sg('one_class_hmm_classify_example', feature_vector_index) [result]=sg('hmm_classify_example', feature_vector_index) sg('output_hmm') sg('output_hmm_defined') [likelihood]=sg('hmm_likelihood') sg('likelihood') sg('save_hmm_likelihood', filename[, save_binary]) [path, likelihood]=sg('get_viterbi_path', dim) sg('vit_def') sg('vit') sg('bw') sg('bw_def') sg('bw_trans') sg('linear_train') sg('save_hmm_path', filename[, save_binary]) sg('convergence_criteria', num_iterations, epsilon) sg('normalize_hmm', [keep_dead_states]) sg('add_states', states, value) sg('permutation_entropy', width, seqnum) [result]=sg('relative_entropy') [result]=sg('entropy') sg('set_feature_matrix', features) sg('set_feature_matrix_sparse', sp1, sp2) sg('new_plugin_estimator', pos_pseudo, neg_pseudo) sg('train_estimator') sg('test_estimator') [result]=sg('plugin_estimate_classify_example', feature_vector_index) [result]=sg('plugin_estimate_classify') sg('set_plugin_estimate', emission_probs, model_sizes) [emission_probs, model_sizes]=sg('get_plugin_estimate') sg('signals_set_model', arg1) sg('signals_set_positions', positions) sg('signals_set_labels', labels) sg('signals_set_split', split) sg('signals_set_train_mask', ) sg('signals_add_feature', feature) sg('signals_add_kernel', kernelparam) sg('signals_run', arg1) sg('best_path', from, to) [prob, path, pos]=sg('best_path_2struct', p, q, cmd_trans, seq, pos, genestr, penalties, penalty_info, nbest, content_weights, segment_sum_weights) sg('set_plif_struct', id, name, limits, penalties, transform, min_value, max_value, use_cache, use_svm) [id, name, limits, penalties, transform, min_value, max_value, use_cache, use_svm]=sg('get_plif_struct') sg('precompute_subkernels') sg('precompute_content_svms', sequence, position_list, weights) [lin_feat]=sg('get_lin_feat') sg('set_lin_feat', lin_feat) sg('init_dyn_prog', num_svms) sg('clean_up_dyn_prog') sg('init_intron_list', start_positions, end_positions, quality) sg('precompute_tiling_features', intensities, probe_pos, tiling_plif_ids) sg('long_transition_settings', use_long_transitions, threshold, max_len) sg('set_model', content_weights, transition_pointers, use_orf, mod_words) [prob, path, pos]=sg('best_path_trans', p, q, nbest, seq_path, a_trans, segment_loss) [p_deriv, q_deriv, cmd_deriv, penalties_deriv, my_scores, my_loss]=sg('best_path_trans_deriv', , my_path, my_pos, p, q, cmd_trans, seq, pos, genestr, penalties, state_signals, penalty_info, dict_weights, mod_words [, segment_loss, segmend_ids_mask]) [W]=sg('compute_poim_wd', max_order, distribution) [W]=sg('get_SPEC_consensus') [W]=sg('get_SPEC_scoring', max_order) [W]=sg('get_WD_consensus') [W]=sg('get_WD_scoring', max_order) [crc32]=sg('crc', string) sg('!', system_command) sg('exit') sg('quit') sg('exec', filename) sg('set_output', 'STDERR|STDOUT|filename') sg('set_threshold', threshold) sg('init_random', value_to_initialize_RNG_with) sg('threads', num_threads) [translation]=sg('translate_string', string, order, start) sg('clear') sg('tic') sg('toc') sg('print', msg) sg('echo', level) sg('loglevel', 'ALL|DEBUG|INFO|NOTICE|WARN|ERROR|CRITICAL|ALERT|EMERGENCY') sg('syntax_highlight', 'ON|OFF') sg('progress', 'ON|OFF') [version]=sg('get_version') sg('help') sg('whos') [results]=sg('run_python', 'Var1', Var1, 'Var2', Var2,..., python_function) [results]=sg('run_octave', 'Var1', Var1, 'Var2', Var2,..., octave_function) [results]=sg('run_r', 'Var1', Var1, 'Var2', Var2,..., r_function)