SHOGUN
v3.0.0
Main Page
Related Pages
Modules
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
src
shogun
multiclass
tree
RelaxedTreeUtil.cpp
Go to the documentation of this file.
1
/*
2
* This program is free software; you can redistribute it and/or modify
3
* it under the terms of the GNU General Public License as published by
4
* the Free Software Foundation; either version 3 of the License, or
5
* (at your option) any later version.
6
*
7
* Written (W) 2012 Chiyuan Zhang
8
* Copyright (C) 2012 Chiyuan Zhang
9
*/
10
11
#include <
shogun/evaluation/CrossValidationSplitting.h
>
12
#include <
shogun/multiclass/tree/RelaxedTreeUtil.h
>
13
#include <
shogun/evaluation/MulticlassAccuracy.h
>
14
15
using namespace
shogun;
16
17
SGMatrix<float64_t>
RelaxedTreeUtil::estimate_confusion_matrix
(
CBaseMulticlassMachine
*machine,
CFeatures
*X,
CMulticlassLabels
*Y, int32_t num_classes)
18
{
19
const
int32_t N_splits = 2;
// 5
20
CCrossValidationSplitting
*
split
=
new
CCrossValidationSplitting
(Y, N_splits);
21
split->
build_subsets
();
22
23
SGMatrix<float64_t>
conf_mat(num_classes, num_classes), tmp_mat(num_classes, num_classes);
24
conf_mat.zero();
25
26
machine->
set_labels
(Y);
27
machine->
set_store_model_features
(
true
);
28
29
for
(int32_t i=0; i < N_splits; ++i)
30
{
31
// subset for training
32
SGVector<index_t>
inverse_subset_indices = split->
generate_subset_inverse
(i);
33
X->
add_subset
(inverse_subset_indices);
34
Y->
add_subset
(inverse_subset_indices);
35
36
machine->
train
(X);
37
X->
remove_subset
();
38
Y->
remove_subset
();
39
40
// subset for predicting
41
SGVector<index_t>
subset_indices = split->
generate_subset_indices
(i);
42
X->
add_subset
(subset_indices);
43
Y->
add_subset
(subset_indices);
44
45
CMulticlassLabels
*pred = machine->
apply_multiclass
(X);
46
47
get_confusion_matrix
(tmp_mat, Y, pred);
48
49
for
(
index_t
j=0; j < tmp_mat.
num_rows
; ++j)
50
{
51
for
(
index_t
k=0; k < tmp_mat.
num_cols
; ++k)
52
{
53
conf_mat(j, k) += tmp_mat(j, k);
54
}
55
}
56
57
SG_UNREF
(pred);
58
59
X->
remove_subset
();
60
Y->
remove_subset
();
61
}
62
63
SG_UNREF
(split);
64
65
for
(
index_t
j=0; j < tmp_mat.
num_rows
; ++j)
66
{
67
for
(
index_t
k=0; k < tmp_mat.
num_cols
; ++k)
68
{
69
conf_mat(j, k) /= N_splits;
70
}
71
}
72
73
return
conf_mat;
74
}
75
76
void
RelaxedTreeUtil::get_confusion_matrix
(
SGMatrix<float64_t>
&conf_mat,
CMulticlassLabels
*gt,
CMulticlassLabels
*pred)
77
{
78
SGMatrix<int32_t>
conf_mat_int =
CMulticlassAccuracy::get_confusion_matrix
(pred, gt);
79
80
for
(
index_t
i=0; i < conf_mat.
num_rows
; ++i)
81
{
82
float64_t
n=0;
83
for
(
index_t
j=0; j < conf_mat.
num_cols
; ++j)
84
{
85
conf_mat(i, j) = conf_mat_int(i, j);
86
n += conf_mat(i, j);
87
}
88
89
if
(n != 0)
90
{
91
for
(
index_t
j=0; j < conf_mat.
num_cols
; ++j)
92
conf_mat(i, j) /= n;
93
}
94
}
95
}
SHOGUN
Machine Learning Toolbox - Documentation