SHOGUN  6.1.3
InverseScalingLearningRate.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2015 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  */
31 
34 #include <shogun/base/Parameter.h>
35 
36 using namespace shogun;
38 {
39  REQUIRE(iter_counter,"Iter_counter (%d) must be positive\n", iter_counter);
41 }
42 
44 {
45  REQUIRE(initial_learning_rate>0.0, "Initial learning rate (%f) should be positive\n",
46  initial_learning_rate);
47  m_initial_learning_rate=initial_learning_rate;
48 }
49 
51 {
52  REQUIRE(exponent>0.0, "Exponent (%f) should be positive\n", exponent);
54 }
55 
57 {
58  REQUIRE(slope>0.0,"Slope (%f) should be positive\n", slope);
59  m_slope=slope;
60 }
61 
63 {
64  REQUIRE(intercept>=0, "Intercept (%f) should be non-negative\n",
65  intercept);
66  m_intercept=intercept;
67 }
68 void InverseScalingLearningRate::init()
69 {
70  m_exponent=0.5;
72  m_intercept=0.0;
73  m_slope=1.0;
74  SG_ADD(&m_slope, "InverseScalingLearningRate__m_slope",
75  "slope in InverseScalingLearningRate", MS_NOT_AVAILABLE);
76  SG_ADD(&m_exponent, "InverseScalingLearningRate__m_exponent",
77  "exponent in InverseScalingLearningRate", MS_NOT_AVAILABLE);
78  SG_ADD(&m_intercept, "InverseScalingLearningRate__m_intercept",
79  "intercept in InverseScalingLearningRate", MS_NOT_AVAILABLE);
80  SG_ADD(&m_initial_learning_rate, "InverseScalingLearningRate__m_initial_learning_rate",
81  "initial_learning_rate in InverseScalingLearningRate", MS_NOT_AVAILABLE);
82 }
#define REQUIRE(x,...)
Definition: SGIO.h:181
virtual void set_initial_learning_rate(float64_t initial_learning_rate)
virtual void set_exponent(float64_t exponent)
virtual float64_t get_learning_rate(int32_t iter_counter)
double float64_t
Definition: common.h:60
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
Container< T > exponent(const Container< T > &a)
#define SG_ADD(...)
Definition: SGObject.h:93
virtual void set_intercept(float64_t intercept)
static int32_t pow(bool x, int32_t n)
Definition: Math.h:474

SHOGUN Machine Learning Toolbox - Documentation