SHOGUN  6.1.3
LogitDVGLikelihood.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  * the reference paper is
31  * Mohammad Emtiyaz Khan, Aleksandr Y. Aravkin, Michael P. Friedlander, Matthias Seeger
32  * Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models. ICML2013
33  *
34 
35  */
36 
37 #ifndef _LOGITDVGLIKELIHOOD_H_
38 #define _LOGITDVGLIKELIHOOD_H_
39 
40 #include <shogun/lib/config.h>
41 
42 
45 
46 namespace shogun
47 {
75 {
76 public:
79 
80  virtual ~CLogitDVGLikelihood();
81 
86  virtual const char* get_name() const { return "LogitDVGLikelihood"; }
87 
93 
100  virtual SGVector<float64_t> get_dual_first_derivative(const TParameter* param) const;
101 
106  virtual float64_t get_dual_upper_bound() const{return 1.0;};
107 
112  virtual float64_t get_dual_lower_bound() const{return 0.0;};
113 
118  virtual bool dual_upper_bound_strict() const {return true;};
119 
124  virtual bool dual_lower_bound_strict() const {return true;};
125 
134 
140 
141 protected:
143  virtual void init_likelihood();
144 
145 private:
147  void init();
148 
149 };
150 }
151 #endif /* _LOGITDVGLIKELIHOOD_H_ */
parameter struct
virtual float64_t get_dual_lower_bound() const
virtual float64_t get_dual_upper_bound() const
virtual bool dual_lower_bound_strict() const
double float64_t
Definition: common.h:60
virtual SGVector< float64_t > get_dual_objective_value()
Class that models dual variational logit likelihood.
virtual const char * get_name() const
virtual bool dual_upper_bound_strict() const
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
Class that models dual variational likelihood.
virtual SGVector< float64_t > get_mu_dual_parameter() const
virtual SGVector< float64_t > get_variance_dual_parameter() const
virtual SGVector< float64_t > get_dual_first_derivative(const TParameter *param) const

SHOGUN Machine Learning Toolbox - Documentation