SHOGUN  6.1.3
MixtureModel.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Parijat Mazumdar
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  */
30 #ifndef _MIXTUREMODEL_H__
31 #define _MIXTUREMODEL_H__
32 
33 #include <shogun/lib/config.h>
35 
36 namespace shogun
37 {
38 
45 {
46  public:
47  /* default constructor */
48  CMixtureModel();
49 
57 
58  /* destructor */
60 
62  virtual const char* get_name() const { return "MixtureModel"; }
63 
69  bool train(CFeatures* data=NULL);
70 
75  int32_t get_num_model_parameters() { return 1; }
76 
81  float64_t get_log_model_parameter(int32_t num_param=1);
82 
89  virtual float64_t get_log_derivative(int32_t num_param, int32_t num_example);
90 
96  virtual float64_t get_log_likelihood_example(int32_t num_example);
97 
103 
108  void set_weights(SGVector<float64_t> weights);
109 
115 
120  void set_components(CDynamicObjectArray* components);
121 
126  index_t get_num_components() const;
127 
133  CDistribution* get_component(index_t index) const;
134 
139  void set_max_iters(int32_t max_iters);
140 
145  int32_t get_max_iters() const;
146 
151  void set_convergence_tolerance(float64_t epsilon);
152 
158 
164 
171 
172  private:
174  void init();
175 
176  private:
178  CDynamicObjectArray* m_components;
179 
181  SGVector<float64_t> m_weights;
182 
184  int32_t m_max_iters;
185 
187  float64_t m_conv_tol;
188 };
189 }
190 #endif /* _MIXTUREMODEL_H__ */
SGVector< float64_t > cluster(SGVector< float64_t > point)
int32_t index_t
Definition: common.h:72
void set_convergence_tolerance(float64_t epsilon)
bool train(CFeatures *data=NULL)
Base class Distribution from which all methods implementing a distribution are derived.
Definition: Distribution.h:44
virtual float64_t get_log_derivative(int32_t num_param, int32_t num_example)
virtual const char * get_name() const
Definition: MixtureModel.h:62
virtual float64_t get_log_likelihood_example(int32_t num_example)
double float64_t
Definition: common.h:60
int32_t get_num_model_parameters()
Definition: MixtureModel.h:75
index_t get_num_components() const
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
CDistribution * get_component(index_t index) const
SGVector< float64_t > sample()
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
int32_t get_max_iters() const
void set_max_iters(int32_t max_iters)
The class Features is the base class of all feature objects.
Definition: Features.h:69
CDynamicObjectArray * get_components() const
float64_t get_log_model_parameter(int32_t num_param=1)
float64_t get_convergence_tolerance() const
void set_components(CDynamicObjectArray *components)
SGVector< float64_t > get_weights() const
void set_weights(SGVector< float64_t > weights)
This is the generic class for mixture models. The final distribution is a mixture of various simple d...
Definition: MixtureModel.h:44

SHOGUN Machine Learning Toolbox - Documentation