SHOGUN  6.1.3
SingleFITCInference.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (W) 2015 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  */
31 
32 #ifndef CSINGLEFITCINFERENCE_H
33 #define CSINGLEFITCINFERENCE_H
34 
35 
36 #include <shogun/lib/config.h>
38 #include <shogun/lib/Lock.h>
39 
40 namespace shogun
41 {
42 
69 {
70 public:
73 
83  CSingleFITCInference(CKernel* kernel, CFeatures* features,
84  CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model,
85  CFeatures* inducing_features);
86 
87  virtual ~CSingleFITCInference();
88 
93  virtual const char* get_name() const { return "SingleFITCInference"; }
94 
95 protected:
96 
112 
131 
148 
156  const TParameter* param);
157 
164 
172 
183  SGMatrix<float64_t> BdK, const TParameter* param);
184 
186  virtual void update_alpha()=0;
187 
189  virtual void update_chol()=0;
190 
194  virtual void update_deriv()=0;
195 
204  const TParameter* param)=0;
205 
214  const TParameter* param);
215 
226 
231 
237 
240 
243 
249 
252 
253 private:
254  /* init */
255  void init();
256 };
257 }
258 #endif /* CSINGLEFITCINFERENCE_H */
virtual float64_t get_derivative_related_cov_helper(SGMatrix< float64_t > dKuui, SGVector< float64_t > v, SGMatrix< float64_t > R)
The class Labels models labels, i.e. class assignments of objects.
Definition: Labels.h:43
parameter struct
virtual SGVector< float64_t > get_derivative_wrt_likelihood_model(const TParameter *param)=0
virtual SGVector< float64_t > get_derivative_related_cov_diagonal()
virtual float64_t get_derivative_related_cov(SGVector< float64_t > ddiagKi, SGMatrix< float64_t > dKuui, SGMatrix< float64_t > dKui)
An abstract class of the mean function.
Definition: MeanFunction.h:49
std::enable_if<!std::is_same< T, complex128_t >::value, float64_t >::type mean(const Container< T > &a)
virtual SGVector< float64_t > get_derivative_wrt_inducing_noise(const TParameter *param)
The sparse inference base class for classification and regression for 1-D labels (1D regression and b...
virtual float64_t get_derivative_related_mean(SGVector< float64_t > dmu)
double float64_t
Definition: common.h:60
virtual SGVector< float64_t > get_derivative_wrt_mean(const TParameter *param)
virtual void update_deriv()=0
virtual void update_chol()=0
virtual SGVector< float64_t > get_derivative_related_inducing_features(SGMatrix< float64_t > BdK, const TParameter *param)
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
The class Features is the base class of all feature objects.
Definition: Features.h:69
The Kernel base class.
The Fully Independent Conditional Training inference base class for Laplace and regression for 1-D la...
virtual const char * get_name() const
virtual SGVector< float64_t > get_derivative_wrt_inducing_features(const TParameter *param)
virtual void update_alpha()=0
The Likelihood model base class.

SHOGUN Machine Learning Toolbox - Documentation