SHOGUN  6.1.3
StudentsTVGLikelihood.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  * Code adapted from
31  * http://hannes.nickisch.org/code/approxXX.tar.gz
32  * and the reference paper is
33  * Nickisch, Hannes, and Carl Edward Rasmussen.
34  * "Approximations for Binary Gaussian Process Classification."
35  * Journal of Machine Learning Research 9.10 (2008).
36  */
37 
38 #ifndef _STUDENTSTVGLIKELIHOOD_H_
39 #define _STUDENTSTVGLIKELIHOOD_H_
40 
41 #include <shogun/lib/config.h>
42 
44 
45 namespace shogun
46 {
47 template<class C> class SGMatrix;
48 
57 {
58 public:
60 
67 
68  virtual ~CStudentsTVGLikelihood();
69 
74  virtual const char* get_name() const { return "StudentsTVGLikelihood"; }
75 
82  virtual bool supports_derivative_wrt_hyperparameter() const { return true; }
83 
84 protected:
86  virtual void init_likelihood();
87 
88 private:
89 
90  void init();
91 
93  float64_t m_log_sigma;
95  float64_t m_log_df;
96 
97 };
98 }
99 #endif /* _STUDENTSTVGLIKELIHOOD_H_ */
virtual const char * get_name() const
Class that models Student&#39;s T likelihood and uses numerical integration to approximate the following ...
virtual bool supports_derivative_wrt_hyperparameter() const
double float64_t
Definition: common.h:60
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
Class that models likelihood and uses numerical integration to approximate the following variational ...

SHOGUN Machine Learning Toolbox - Documentation