========== ShareBoost ========== The shareBoost algorithm learns a multiclass predictor from a subset of shared features of the samples with forward greedy selection approach. See :cite:`shalev2011shareboost` for a detailed introduction. ------- Example ------- Imagine we have files with training and test data. We create CDenseFeatures (here 64 bit floats aka RealFeatures) and :sgclass:`CMulticlassLabels` as .. sgexample:: shareboost.sg:create_features We create an instance of the :sgclass:`CShareBoost` classifier by setting the number of features expected to be used for learning. .. sgexample:: shareboost.sg:create_instance Then we train and apply it to test data, which gives :sgclass:`CMulticlassLabels`. .. sgexample:: shareboost.sg:train_and_apply We can evaluate test performance via e.g. :sgclass:`CMulticlassAccuracy`. .. sgexample:: shareboost.sg:evaluate_accuracy ---------- References ---------- .. bibliography:: ../../references.bib :filter: docname in docnames