================================== Multi-class Support Vector Machine ================================== The multi-class support vector machine is a multi-class classifier which uses :sgclass:`CLibSVM` to do one vs one classification. See :doc:`../binary_classifier/kernel_svm` for more details. ------- Example ------- Imagine we have files with training and test data. We create CDenseFeatures (here 64 bit floats aka RealFeatures) and :sgclass:`CMulticlassLabels` as .. sgexample:: svm.sg:create_features In order to run :sgclass:`CMulticlassLibSVM`, we need to initialize a kernel like :sgclass:`CGaussianKernel` with training features and some parameters like :math:`C` and epsilon i.e. residual convergence parameter which is optional. .. sgexample:: svm.sg:set_parameters We create an instance of the :sgclass:`CMulticlassLibSVM` classifier by passing it regularization coefficient, kernel and labels. .. sgexample:: svm.sg:create_instance Then we train and apply it to test data, which here gives :sgclass:`CMulticlassLabels`. .. sgexample:: svm.sg:train_and_apply Finally, we can evaluate test performance via e.g. :sgclass:`CMulticlassAccuracy`. .. sgexample:: svm.sg:evaluate_error ---------- References ---------- :wiki:`Multiclass_classification` :wiki:`Support_vector_machine` :doc:`kernel_svm` .. bibliography:: ../../references.bib :filter: docname in docnames