================================== Feedforward Network for Regression ================================== This page illustrates the usage of feedforward networks for regression. For more details about feedforward networks, see :doc:`feedforward_net_classification`. ------- Example ------- Imagine we have files with training and test data. We create CDenseFeatures (here 64 bit floats aka RealFeatures) and :sgclass:`CRegressionLabels` as .. sgexample:: feedforward_net_regression.sg:create_features We create instances of :sgclass:`CNeuralLayers` and add an input layer, hidden layer and output layer which are building blocks of :sgclass:`CNeuralNetwork` .. sgexample:: feedforward_net_regression.sg:add_layers We create a :sgclass:`CNeuralNetwork` instance by using the above layers and randomly initialize the network parameters by sampling from a gaussian distribution. .. sgexample:: feedforward_net_regression.sg:create_instance Before training, we need to set appropriate parameters like regularization coefficient, number of epochs, learning rate, etc. as shown below. More parameters can be found in the documentation of :sgclass:`CNeuralNetwork`. .. sgexample:: feedforward_net_regression.sg:set_parameters We train the model and apply it to test data. .. sgexample:: feedforward_net_regression.sg:train_and_apply We can extract the parameters of the trained network. .. sgexample:: feedforward_net_regression.sg:get_params Finally, we compute :sgclass:`CMeanSquaredError`. .. sgexample:: feedforward_net_regression.sg:evaluate_error ---------- References ---------- :wiki:`Artificial_neural_network` :doc:`feedforward_net_classification` .. bibliography:: ../../references.bib :filter: docname in docnames