32 #ifndef CSINGLESPARSEINFERENCEBASE_H 
   33 #define CSINGLESPARSEINFERENCEBASE_H 
   73     virtual const char* 
get_name()
 const { 
return "SingleSparseInferenceBase"; }
 
  235     static double nlopt_function(
unsigned n, 
const double* x, 
double* grad, 
void* func_data);
 
virtual SGVector< float64_t > get_derivative_wrt_inducing_noise(const TParameter *param)=0
The class Labels models labels, i.e. class assignments of objects. 
bool m_opt_inducing_features
SGVector< float64_t > m_upper_bound
virtual SGVector< float64_t > get_derivative_wrt_inference_method(const TParameter *param)
An abstract class of the mean function. 
virtual ~CSingleSparseInferenceBase()
float64_t m_ind_tolerance
virtual void set_tolearance_for_inducing_features(float64_t tol)
Class Lock used for synchronization in concurrent programs. 
CSingleSparseInferenceBase()
SGVector< float64_t > m_lower_bound
virtual void enable_optimizing_inducing_features(bool is_optmization)
virtual void set_upper_bound_of_inducing_features(SGVector< float64_t > bound)
The sparse inference base class for classification and regression for 1-D labels (1D regression and b...
virtual void set_max_iterations_for_inducing_features(int32_t it)
all of classes and functions are contained in the shogun namespace 
virtual void check_fully_sparse()
The class Features is the base class of all feature objects. 
virtual SGVector< float64_t > get_derivative_wrt_kernel(const TParameter *param)
virtual const char * get_name() const 
virtual void set_kernel(CKernel *kern)
virtual SGVector< float64_t > get_derivative_wrt_inducing_features(const TParameter *param)=0
virtual void check_bound(SGVector< float64_t > bound, const char *name)
virtual void set_lower_bound_of_inducing_features(SGVector< float64_t > bound)
The Fully Independent Conditional Training inference base class. 
virtual float64_t get_derivative_related_cov(SGVector< float64_t > ddiagKi, SGMatrix< float64_t > dKuui, SGMatrix< float64_t > dKui)=0
virtual void optimize_inducing_features()
The Likelihood model base class. 
float64_t m_max_ind_iterations