GMM.h

Go to the documentation of this file.
00001 /*
00002  * This program is free software; you can redistribute it and/or modify
00003  * it under the terms of the GNU General Public License as published by
00004  * the Free Software Foundation; either version 3 of the License, or
00005  * (at your option) any later version.
00006  *
00007  * Written (W) 2011 Alesis Novik
00008  * Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
00009  */
00010 #ifndef _GMM_H__
00011 #define _GMM_H__
00012 
00013 #include <shogun/lib/config.h>
00014 
00015 #ifdef HAVE_LAPACK
00016 
00017 #include <shogun/distributions/Distribution.h>
00018 #include <shogun/distributions/Gaussian.h>
00019 #include <shogun/lib/common.h>
00020 
00021 namespace shogun
00022 {
00036 class CGMM : public CDistribution
00037 {
00038     public:
00040         CGMM();
00046         CGMM(int32_t n, ECovType cov_type=FULL);
00053         CGMM(SGVector<CGaussian*> components, SGVector<float64_t> coefficients, bool copy=false);
00054         virtual ~CGMM();
00055 
00057         void cleanup();
00058 
00065         virtual bool train(CFeatures* data=NULL);
00066 
00075         float64_t train_em(float64_t min_cov=1e-9, int32_t max_iter=1000, float64_t min_change=1e-9);
00076 
00087         float64_t train_smem(int32_t max_iter=100, int32_t max_cand=5, float64_t min_cov=1e-9, int32_t max_em_iter=1000, float64_t min_change=1e-9);
00088 
00094         void max_likelihood(SGMatrix<float64_t> alpha, float64_t min_cov);
00095 
00100         virtual int32_t get_num_model_parameters();
00101 
00107         virtual float64_t get_log_model_parameter(int32_t num_param);
00108 
00115         virtual float64_t get_log_derivative(
00116             int32_t num_param, int32_t num_example);
00117 
00125         virtual float64_t get_log_likelihood_example(int32_t num_example);
00126 
00134         virtual float64_t get_likelihood_example(int32_t num_example)
00135         {
00136             return CMath::exp(get_log_likelihood_example(num_example));
00137         }
00138 
00145         virtual inline SGVector<float64_t> get_nth_mean(int32_t num)
00146         {
00147             ASSERT(num<m_components.vlen);
00148             return m_components.vector[num]->get_mean();
00149         }
00150 
00156         virtual inline void set_nth_mean(SGVector<float64_t> mean, int32_t num)
00157         {
00158             ASSERT(num<m_components.vlen);
00159             m_components.vector[num]->set_mean(mean);
00160         }
00161 
00168         virtual inline SGMatrix<float64_t> get_nth_cov(int32_t num)
00169         {
00170             ASSERT(num<m_components.vlen);
00171             return m_components.vector[num]->get_cov();
00172         }
00173 
00179         virtual inline void set_nth_cov(SGMatrix<float64_t> cov, int32_t num)
00180         {
00181             ASSERT(num<m_components.vlen);
00182             m_components.vector[num]->set_cov(cov);
00183         }
00184 
00189         virtual inline SGVector<float64_t> get_coef()
00190         {
00191             return m_coefficients;
00192         }
00193 
00198         virtual inline void set_coef(SGVector<float64_t> coefficients)
00199         {
00200             m_coefficients.destroy_vector();
00201             m_coefficients=coefficients;
00202         }
00203 
00208         virtual inline SGVector<CGaussian*> get_comp()
00209         {
00210             return m_components;
00211         }
00212 
00217         virtual inline void set_comp(SGVector<CGaussian*> components)
00218         {
00219             for (int32_t i=0; i<m_components.vlen; i++)
00220             {
00221                 SG_UNREF(m_components.vector[i]);
00222             }
00223 
00224             m_components.destroy_vector();
00225             m_components=components;
00226 
00227             for (int32_t i=0; i<m_components.vlen; i++)
00228             {
00229                 SG_REF(m_components.vector[i]);
00230             }
00231         }
00232 
00237         SGVector<float64_t> sample();
00238 
00244         SGVector<float64_t> cluster(SGVector<float64_t> point);
00245 
00247         inline virtual const char* get_name() const { return "GMM"; }
00248 
00249     private:
00256         SGMatrix<float64_t> alpha_init(SGMatrix<float64_t> init_means);
00257 
00259         void register_params();
00260 
00270         void partial_em(int32_t comp1, int32_t comp2, int32_t comp3, float64_t min_cov, int32_t max_em_iter, float64_t min_change);
00271 
00272     protected:
00274         SGVector<CGaussian*> m_components;
00276         SGVector<float64_t> m_coefficients;
00277 };
00278 }
00279 #endif //HAVE_LAPACK
00280 #endif //_GMM_H__
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines

SHOGUN Machine Learning Toolbox - Documentation