all of classes and functions are contained in the shogun namespace More...
Classes | |
class | DynArray |
Template Dynamic array class that creates an array that can be used like a list or an array. More... | |
class | Parallel |
Class Parallel provides helper functions for multithreading. More... | |
struct | TParameter |
parameter struct More... | |
class | Parameter |
Parameter class. More... | |
class | SGParamInfo |
Class that holds informations about a certain parameter of an CSGObject. Contains name, type, etc. This is used for mapping types that have changed in different versions of shogun. Instances of this class may be compared to each other. Ordering is based on name, equalness is based on all attributes. More... | |
class | ParameterMapElement |
Class to hold instances of a parameter map. Each element contains a key and a value, which are of type SGParamInfo. May be compared to each other based on their keys. More... | |
class | ParameterMap |
Implements a map of ParameterMapElement instances. More... | |
class | CSGObject |
Class SGObject is the base class of all shogun objects. More... | |
class | Version |
Class Version provides version information. More... | |
class | CAveragedPerceptron |
Class Averaged Perceptron implements the standard linear (online) algorithm. Averaged perceptron is the simple extension of Perceptron. More... | |
class | CGaussianNaiveBayes |
Class GaussianNaiveBayes, a Gaussian Naive Bayes classifier. More... | |
class | CKNN |
Class KNN, an implementation of the standard k-nearest neigbor classifier. More... | |
class | CLDA |
Class LDA implements regularized Linear Discriminant Analysis. More... | |
class | CLPBoost |
Class LPBoost trains a linear classifier called Linear Programming Machine, i.e. a SVM using a ![]() | |
class | CLPM |
Class LPM trains a linear classifier called Linear Programming Machine, i.e. a SVM using a ![]() | |
class | CMKL |
Multiple Kernel Learning. More... | |
class | CMKLClassification |
Multiple Kernel Learning for two-class-classification. More... | |
class | CMKLMultiClass |
MKLMultiClass is a class for L1-norm multiclass MKL. More... | |
class | MKLMultiClassGLPK |
MKLMultiClassGLPK is a helper class for MKLMultiClass. More... | |
class | MKLMultiClassGradient |
MKLMultiClassGradient is a helper class for MKLMultiClass. More... | |
class | MKLMultiClassOptimizationBase |
MKLMultiClassOptimizationBase is a helper class for MKLMultiClass. More... | |
class | CMKLOneClass |
Multiple Kernel Learning for one-class-classification. More... | |
class | CPerceptron |
Class Perceptron implements the standard linear (online) perceptron. More... | |
class | CPluginEstimate |
class PluginEstimate More... | |
class | CSubGradientLPM |
Class SubGradientSVM trains a linear classifier called Linear Programming Machine, i.e. a SVM using a ![]() | |
class | CCPLEXSVM |
CplexSVM a SVM solver implementation based on cplex (unfinished). More... | |
class | CDomainAdaptationSVM |
class DomainAdaptationSVM More... | |
class | CDomainAdaptationSVMLinear |
class DomainAdaptationSVMLinear More... | |
class | CGMNPLib |
class GMNPLib Library of solvers for Generalized Minimal Norm Problem (GMNP). More... | |
class | CGMNPSVM |
Class GMNPSVM implements a one vs. rest MultiClass SVM. More... | |
class | CGNPPLib |
class GNPPLib, a Library of solvers for Generalized Nearest Point Problem (GNPP). More... | |
class | CGNPPSVM |
class GNPPSVM More... | |
class | CGPBTSVM |
class GPBTSVM More... | |
class | CLaRank |
the LaRank multiclass SVM machine More... | |
class | CLibLinear |
class to implement LibLinear More... | |
class | CLibSVM |
LibSVM. More... | |
class | CLibSVMMultiClass |
class LibSVMMultiClass More... | |
class | CLibSVMOneClass |
class LibSVMOneClass More... | |
class | CMPDSVM |
class MPDSVM More... | |
class | CMultiClassSVM |
class MultiClassSVM More... | |
class | COnlineLibLinear |
Class implementing a purely online version of LibLinear, using the L2R_L1LOSS_SVC_DUAL solver only. More... | |
class | COnlineSVMSGD |
class OnlineSVMSGD More... | |
class | CQPBSVMLib |
class QPBSVMLib More... | |
class | CScatterSVM |
ScatterSVM - Multiclass SVM. More... | |
class | CSGDQN |
class SGDQN More... | |
class | CSubGradientSVM |
class SubGradientSVM More... | |
class | CSVM |
A generic Support Vector Machine Interface. More... | |
class | CSVMLight |
class SVMlight More... | |
class | CSVMLightOneClass |
Trains a one class C SVM. More... | |
class | CSVMLin |
class SVMLin More... | |
class | CSVMOcas |
class SVMOcas More... | |
class | CSVMSGD |
class SVMSGD More... | |
class | CWDSVMOcas |
class WDSVMOcas More... | |
class | CVwCacheReader |
Base class from which all cache readers for VW should be derived. More... | |
class | CVwCacheWriter |
CVwCacheWriter is the base class for all VW cache creating classes. More... | |
class | CVwNativeCacheReader |
Class CVwNativeCacheReader reads from a cache exactly as that which has been produced by VW's default cache format. More... | |
class | CVwNativeCacheWriter |
Class CVwNativeCacheWriter writes a cache exactly as that which would be produced by VW's default cache format. More... | |
class | CVwAdaptiveLearner |
VwAdaptiveLearner uses an adaptive subgradient technique to update weights. More... | |
class | CVwNonAdaptiveLearner |
VwNonAdaptiveLearner uses a standard gradient descent weight update rule. More... | |
class | CVowpalWabbit |
Class CVowpalWabbit is the implementation of the online learning algorithm used in Vowpal Wabbit. More... | |
class | VwFeature |
One feature in VW. More... | |
class | VwExample |
Example class for VW. More... | |
class | VwLabel |
Class VwLabel holds a label object used by VW. More... | |
class | CVwEnvironment |
Class CVwEnvironment is the environment used by VW. More... | |
class | CVwLearner |
Base class for all VW learners. More... | |
class | CVwParser |
CVwParser is the object which provides the functions to parse examples from buffered input. More... | |
class | CVwRegressor |
Regressor used by VW. More... | |
class | CGMM |
Gaussian Mixture Model interface. More... | |
class | CHierarchical |
Agglomerative hierarchical single linkage clustering. More... | |
class | CKMeans |
KMeans clustering, partitions the data into k (a-priori specified) clusters. More... | |
class | CAttenuatedEuclidianDistance |
class AttenuatedEuclidianDistance More... | |
class | CBrayCurtisDistance |
class Bray-Curtis distance More... | |
class | CCanberraMetric |
class CanberraMetric More... | |
class | CCanberraWordDistance |
class CanberraWordDistance More... | |
class | CChebyshewMetric |
class ChebyshewMetric More... | |
class | CChiSquareDistance |
class ChiSquareDistance More... | |
class | CCosineDistance |
class CosineDistance More... | |
class | CCustomDistance |
The Custom Distance allows for custom user provided distance matrices. More... | |
class | CDistance |
Class Distance, a base class for all the distances used in the Shogun toolbox. More... | |
class | CEuclidianDistance |
class EuclidianDistance More... | |
class | CGeodesicMetric |
class GeodesicMetric More... | |
class | CHammingWordDistance |
class HammingWordDistance More... | |
class | CJensenMetric |
class JensenMetric More... | |
class | CKernelDistance |
The Kernel distance takes a distance as input. More... | |
class | CManhattanMetric |
class ManhattanMetric More... | |
class | CManhattanWordDistance |
class ManhattanWordDistance More... | |
class | CMinkowskiMetric |
class MinkowskiMetric More... | |
class | CRealDistance |
class RealDistance More... | |
class | CSimpleDistance |
template class SimpleDistance More... | |
class | CSparseDistance |
template class SparseDistance More... | |
class | CSparseEuclidianDistance |
class SparseEucldianDistance More... | |
class | CStringDistance |
template class StringDistance More... | |
class | CTanimotoDistance |
class Tanimoto coefficient More... | |
class | CDistribution |
Base class Distribution from which all methods implementing a distribution are derived. More... | |
class | CGaussian |
Gaussian distribution interface. More... | |
class | CGHMM |
class GHMM - this class is non-functional and was meant to implement a Generalize Hidden Markov Model (aka Semi Hidden Markov HMM). More... | |
class | CHistogram |
Class Histogram computes a histogram over all 16bit unsigned integers in the features. More... | |
class | Model |
class Model More... | |
class | CHMM |
Hidden Markov Model. More... | |
class | CLinearHMM |
The class LinearHMM is for learning Higher Order Markov chains. More... | |
class | CPositionalPWM |
Positional PWM. More... | |
class | CBinaryClassEvaluation |
The class TwoClassEvaluation a base class used to evaluate 2-class classification. More... | |
class | CContingencyTableEvaluation |
The class ContingencyTableEvaluation a base class used to evaluate 2-class classification with TP, FP, TN, FN rates. More... | |
class | CAccuracyMeasure |
class AccuracyMeasure used to measure accuracy of 2-class classifier. More... | |
class | CErrorRateMeasure |
class ErrorRateMeasure used to measure error rate of 2-class classifier. More... | |
class | CBALMeasure |
class BALMeasure used to measure balanced error of 2-class classifier. More... | |
class | CWRACCMeasure |
class WRACCMeasure used to measure weighted relative accuracy of 2-class classifier. More... | |
class | CF1Measure |
class F1Measure used to measure F1 score of 2-class classifier. More... | |
class | CCrossCorrelationMeasure |
class CrossCorrelationMeasure used to measure cross correlation coefficient of 2-class classifier. More... | |
class | CRecallMeasure |
class RecallMeasure used to measure recall of 2-class classifier. More... | |
class | CPrecisionMeasure |
class PrecisionMeasure used to measure precision of 2-class classifier. More... | |
class | CSpecificityMeasure |
class SpecificityMeasure used to measure specificity of 2-class classifier. More... | |
struct | CrossValidationResult |
type to encapsulate the results of an evaluation run. May contain confidence interval (if conf_int_alpha!=0). m_conf_int_alpha is the probability for an error, i.e. the value does not lie in the confidence interval. More... | |
class | CCrossValidation |
base class for cross-validation evaluation. Given a learning machine, a splitting strategy, an evaluation criterium, features and correspnding labels, this provides an interface for cross-validation. Results may be retrieved using the evaluate method. A number of repetitions may be specified for obtaining more accurate results. The arithmetic mean of different runs is returned along with confidence intervals, if a p-value is specified. Default number of runs is one, confidence interval combutation is disabled. More... | |
class | CEvaluation |
The class Evaluation a main class for other classes used to evaluate labels, e.g. accuracy of classification or mean squared error of regression. More... | |
class | CMeanSquaredError |
the class MeanSquaredError used to compute error of regression model. More... | |
class | CMulticlassAccuracy |
The class MulticlassAccuracy used to compute accuracy of multiclass classification. More... | |
class | CPRCEvaluation |
The class PRCEvalution used to evaluate PRC (Precision Recall Curve) graph of binary classifier. This class also has an capability of calculating auPRC (area under PRC). More... | |
class | CROCEvaluation |
The class ROCEvalution used to evaluate ROC (Receiver Operator Characteristic) graph of binary classifier. This class also has an capability of calculating auROC (area under ROC). More... | |
class | CSplittingStrategy |
Abstract base class for all splitting types. Takes a CLabels instance and generates a desired number of subsets which are being accessed by their indices via the method generate_subset_indices(...). More... | |
class | CStratifiedCrossValidationSplitting |
Implementation of stratified cross-validation on the base of CSplittingStrategy. Produces subset index sets of equal size (at most one difference) in which the label ratio is equal (at most one difference) to the label ratio of the specified labels. More... | |
class | CAlphabet |
The class Alphabet implements an alphabet and alphabet utility functions. More... | |
class | CAttributeFeatures |
Implements attributed features, that is in the simplest case a number of (attribute, value) pairs. More... | |
class | CCombinedDotFeatures |
Features that allow stacking of a number of DotFeatures. More... | |
class | CCombinedFeatures |
The class CombinedFeatures is used to combine a number of of feature objects into a single CombinedFeatures object. More... | |
class | CDotFeatures |
Features that support dot products among other operations. More... | |
class | CDummyFeatures |
The class DummyFeatures implements features that only know the number of feature objects (but don't actually contain any). More... | |
class | CExplicitSpecFeatures |
Features that compute the Spectrum Kernel feature space explicitly. More... | |
class | CFeatures |
The class Features is the base class of all feature objects. More... | |
class | CFKFeatures |
The class FKFeatures implements Fischer kernel features obtained from two Hidden Markov models. More... | |
class | CHashedWDFeatures |
Features that compute the Weighted Degreee Kernel feature space explicitly. More... | |
class | CHashedWDFeaturesTransposed |
Features that compute the Weighted Degreee Kernel feature space explicitly. More... | |
class | CImplicitWeightedSpecFeatures |
Features that compute the Weighted Spectrum Kernel feature space explicitly. More... | |
class | CLabels |
The class Labels models labels, i.e. class assignments of objects. More... | |
class | CLBPPyrDotFeatures |
implement DotFeatures for the polynomial kernel More... | |
class | CPolyFeatures |
implement DotFeatures for the polynomial kernel More... | |
class | CRealFileFeatures |
The class RealFileFeatures implements a dense double-precision floating point matrix from a file. More... | |
class | CSimpleFeatures |
The class SimpleFeatures implements dense feature matrices. More... | |
class | CSNPFeatures |
Features that compute the Weighted Degreee Kernel feature space explicitly. More... | |
class | CSparseFeatures |
Template class SparseFeatures implements sparse matrices. More... | |
class | CSparsePolyFeatures |
implement DotFeatures for the polynomial kernel More... | |
class | CStreamingDotFeatures |
Streaming features that support dot products among other operations. More... | |
class | CStreamingFeatures |
Streaming features are features which are used for online algorithms. More... | |
class | CStreamingSimpleFeatures |
This class implements streaming features with dense feature vectors. More... | |
class | CStreamingSparseFeatures |
This class implements streaming features with sparse feature vectors. The vector is represented as an SGSparseVector<T>. Each entry is of type SGSparseVectorEntry<T> with members `feat_index' and `entry'. More... | |
class | CStreamingStringFeatures |
This class implements streaming features as strings. More... | |
class | CStreamingVwFeatures |
This class implements streaming features for use with VW. More... | |
class | CStringFeatures |
Template class StringFeatures implements a list of strings. More... | |
class | CStringFileFeatures |
File based string features. More... | |
class | CSubset |
class for adding subset support to a class. Provides an interface for getting/setting subset_matrices and index conversion. Do not inherit from this class, use it as variable. Write wrappers for all get/set functions. More... | |
class | CTOPFeatures |
The class TOPFeatures implements TOP kernel features obtained from two Hidden Markov models. More... | |
class | CWDFeatures |
Features that compute the Weighted Degreee Kernel feature space explicitly. More... | |
class | CAsciiFile |
A Ascii File access class. More... | |
class | CBinaryFile |
A Binary file access class. More... | |
class | CBinaryStream |
memory mapped emulation via binary streams (files) More... | |
class | CFile |
A File access base class. More... | |
class | CInputParser |
Class CInputParser is a templated class used to maintain the reading/parsing/providing of examples. More... | |
class | CIOBuffer |
An I/O buffer class. More... | |
class | CMemoryMappedFile |
memory mapped file More... | |
class | Example |
Class Example is the container type for the vector+label combination. More... | |
class | CParseBuffer |
Class CParseBuffer implements a ring of examples of a defined size. The ring stores objects of the Example type. More... | |
class | CSerializableAsciiFile |
serializable ascii file More... | |
class | SerializableAsciiReader00 |
Serializable ascii reader. More... | |
class | CSerializableFile |
serializable file More... | |
class | SGIO |
Class SGIO, used to do input output operations throughout shogun. More... | |
struct | substring |
struct Substring, specified by start position and end position. More... | |
class | CSimpleFile |
Template class SimpleFile to read and write from files. More... | |
class | CStreamingAsciiFile |
Class StreamingAsciiFile to read vector-by-vector from ASCII files. More... | |
class | CStreamingFile |
A Streaming File access class. More... | |
class | CStreamingFileFromFeatures |
Class StreamingFileFromFeatures to read vector-by-vector from a CFeatures object. More... | |
class | CStreamingFileFromSimpleFeatures |
Class CStreamingFileFromSimpleFeatures is a derived class of CStreamingFile which creates an input source for the online framework from a CSimpleFeatures object. More... | |
class | CStreamingFileFromSparseFeatures |
Class CStreamingFileFromSparseFeatures is derived from CStreamingFile and provides an input source for the online framework. It uses an existing CSparseFeatures object to generate online examples. More... | |
class | CStreamingFileFromStringFeatures |
Class CStreamingFileFromStringFeatures is derived from CStreamingFile and provides an input source for the online framework from a CStringFeatures object. More... | |
class | CStreamingVwCacheFile |
Class StreamingVwCacheFile to read vector-by-vector from VW cache files. More... | |
class | CStreamingVwFile |
Class StreamingVwFile to read vector-by-vector from Vowpal Wabbit data files. It reads the example and label into one object of VwExample type. More... | |
class | CANOVAKernel |
ANOVA (ANalysis Of VAriances) kernel. More... | |
class | CAUCKernel |
The AUC kernel can be used to maximize the area under the receiver operator characteristic curve (AUC) instead of margin in SVM training. More... | |
class | CAvgDiagKernelNormalizer |
Normalize the kernel by either a constant or the average value of the diagonal elements (depending on argument c of the constructor). More... | |
class | CBesselKernel |
the class Bessel kernel More... | |
class | CCauchyKernel |
Cauchy kernel. More... | |
class | CChi2Kernel |
The Chi2 kernel operating on realvalued vectors computes the chi-squared distance between sets of histograms. More... | |
class | CCircularKernel |
Circular kernel. More... | |
class | CCombinedKernel |
The Combined kernel is used to combine a number of kernels into a single CombinedKernel object by linear combination. More... | |
class | CCommUlongStringKernel |
The CommUlongString kernel may be used to compute the spectrum kernel from strings that have been mapped into unsigned 64bit integers. More... | |
class | CCommWordStringKernel |
The CommWordString kernel may be used to compute the spectrum kernel from strings that have been mapped into unsigned 16bit integers. More... | |
class | CConstKernel |
The Constant Kernel returns a constant for all elements. More... | |
class | CCustomKernel |
The Custom Kernel allows for custom user provided kernel matrices. More... | |
class | CDiagKernel |
The Diagonal Kernel returns a constant for the diagonal and zero otherwise. More... | |
class | CDiceKernelNormalizer |
DiceKernelNormalizer performs kernel normalization inspired by the Dice coefficient (see http://en.wikipedia.org/wiki/Dice's_coefficient). More... | |
class | CDistanceKernel |
The Distance kernel takes a distance as input. More... | |
class | CDistantSegmentsKernel |
The distant segments kernel is a string kernel, which counts the number of substrings, so-called segments, at a certain distance from each other. More... | |
class | CDotKernel |
Template class DotKernel is the base class for kernels working on DotFeatures. More... | |
class | CExponentialKernel |
The Exponential Kernel, closely related to the Gaussian Kernel computed on CDotFeatures. More... | |
class | CFirstElementKernelNormalizer |
Normalize the kernel by a constant obtained from the first element of the kernel matrix, i.e. ![]() | |
class | CFixedDegreeStringKernel |
The FixedDegree String kernel takes as input two strings of same size and counts the number of matches of length d. More... | |
class | CGaussianKernel |
The well known Gaussian kernel (swiss army knife for SVMs) computed on CDotFeatures. More... | |
class | CGaussianMatchStringKernel |
The class GaussianMatchStringKernel computes a variant of the Gaussian kernel on strings of same length. More... | |
class | CGaussianShiftKernel |
An experimental kernel inspired by the WeightedDegreePositionStringKernel and the Gaussian kernel. More... | |
class | CGaussianShortRealKernel |
The well known Gaussian kernel (swiss army knife for SVMs) on dense short-real valued features. More... | |
class | CHistogramIntersectionKernel |
The HistogramIntersection kernel operating on realvalued vectors computes the histogram intersection distance between sets of histograms. Note: the current implementation assumes positive values for the histograms, and input vectors should sum to 1. More... | |
class | CHistogramWordStringKernel |
The HistogramWordString computes the TOP kernel on inhomogeneous Markov Chains. More... | |
class | CIdentityKernelNormalizer |
Identity Kernel Normalization, i.e. no normalization is applied. More... | |
class | CInverseMultiQuadricKernel |
InverseMultiQuadricKernel. More... | |
class | CKernel |
The Kernel base class. More... | |
class | CKernelNormalizer |
The class Kernel Normalizer defines a function to post-process kernel values. More... | |
class | CLinearKernel |
Computes the standard linear kernel on CDotFeatures. More... | |
class | CLinearStringKernel |
Computes the standard linear kernel on dense char valued features. More... | |
class | CLocalAlignmentStringKernel |
The LocalAlignmentString kernel compares two sequences through all possible local alignments between the two sequences. More... | |
class | CLocalityImprovedStringKernel |
The LocalityImprovedString kernel is inspired by the polynomial kernel. Comparing neighboring characters it puts emphasize on local features. More... | |
class | CLogKernel |
Log kernel. More... | |
class | CMatchWordStringKernel |
The class MatchWordStringKernel computes a variant of the polynomial kernel on strings of same length converted to a word alphabet. More... | |
class | CMultiquadricKernel |
MultiquadricKernel. More... | |
class | CMultitaskKernelMaskNormalizer |
The MultitaskKernel allows Multitask Learning via a modified kernel function. More... | |
class | CMultitaskKernelMaskPairNormalizer |
The MultitaskKernel allows Multitask Learning via a modified kernel function. More... | |
class | CMultitaskKernelMklNormalizer |
Base-class for parameterized Kernel Normalizers. More... | |
class | CMultitaskKernelNormalizer |
The MultitaskKernel allows Multitask Learning via a modified kernel function. More... | |
class | CMultitaskKernelPlifNormalizer |
The MultitaskKernel allows learning a piece-wise linear function (PLIF) via MKL. More... | |
class | CNode |
A CNode is an element of a CTaxonomy, which is used to describe hierarchical structure between tasks. More... | |
class | CTaxonomy |
CTaxonomy is used to describe hierarchical structure between tasks. More... | |
class | CMultitaskKernelTreeNormalizer |
The MultitaskKernel allows Multitask Learning via a modified kernel function based on taxonomy. More... | |
class | COligoStringKernel |
This class offers access to the Oligo Kernel introduced by Meinicke et al. in 2004. More... | |
class | CPolyKernel |
Computes the standard polynomial kernel on CDotFeatures. More... | |
class | CPolyMatchStringKernel |
The class PolyMatchStringKernel computes a variant of the polynomial kernel on strings of same length. More... | |
class | CPolyMatchWordStringKernel |
The class PolyMatchWordStringKernel computes a variant of the polynomial kernel on word-features. More... | |
class | CPowerKernel |
Power kernel. More... | |
class | CPyramidChi2 |
Pyramid Kernel over Chi2 matched histograms. More... | |
class | CRationalQuadraticKernel |
Rational Quadratic kernel. More... | |
class | CRegulatoryModulesStringKernel |
The Regulaty Modules kernel, based on the WD kernel, as published in Schultheiss et al., Bioinformatics (2009) on regulatory sequences. More... | |
class | CRidgeKernelNormalizer |
Normalize the kernel by adding a constant term to its diagonal. This aids kernels to become positive definite (even though they are not - often caused by numerical problems). More... | |
class | CSalzbergWordStringKernel |
The SalzbergWordString kernel implements the Salzberg kernel. More... | |
class | CScatterKernelNormalizer |
the scatter kernel normalizer More... | |
class | CSigmoidKernel |
The standard Sigmoid kernel computed on dense real valued features. More... | |
class | CSimpleLocalityImprovedStringKernel |
SimpleLocalityImprovedString kernel, is a ``simplified'' and better performing version of the Locality improved kernel. More... | |
class | CSNPStringKernel |
The class SNPStringKernel computes a variant of the polynomial kernel on strings of same length. More... | |
class | CSparseKernel |
Template class SparseKernel, is the base class of kernels working on sparse features. More... | |
struct | SSKFeatures |
SSKFeatures. More... | |
class | CSparseSpatialSampleStringKernel |
Sparse Spatial Sample String Kernel by Pavel Kuksa <pkuksa@cs.rutgers.edu> and Vladimir Pavlovic <vladimir@cs.rutgers.edu> More... | |
class | CSpectrumMismatchRBFKernel |
spectrum mismatch rbf kernel More... | |
class | CSpectrumRBFKernel |
spectrum rbf kernel More... | |
class | CSphericalKernel |
Spherical kernel. More... | |
class | CSplineKernel |
Computes the Spline Kernel function which is the cubic polynomial. More... | |
class | CSqrtDiagKernelNormalizer |
SqrtDiagKernelNormalizer divides by the Square Root of the product of the diagonal elements. More... | |
class | CStringKernel |
Template class StringKernel, is the base class of all String Kernels. More... | |
class | CTanimotoKernelNormalizer |
TanimotoKernelNormalizer performs kernel normalization inspired by the Tanimoto coefficient (see http://en.wikipedia.org/wiki/Jaccard_index ). More... | |
class | CTensorProductPairKernel |
Computes the Tensor Product Pair Kernel (TPPK). More... | |
class | CTStudentKernel |
Generalized T-Student kernel. More... | |
class | CVarianceKernelNormalizer |
VarianceKernelNormalizer divides by the ``variance''. More... | |
class | CWaveKernel |
Wave kernel. More... | |
class | CWaveletKernel |
the class WaveletKernel More... | |
class | CWeightedCommWordStringKernel |
The WeightedCommWordString kernel may be used to compute the weighted spectrum kernel (i.e. a spectrum kernel for 1 to K-mers, where each k-mer length is weighted by some coefficient ![]() | |
class | CWeightedDegreePositionStringKernel |
The Weighted Degree Position String kernel (Weighted Degree kernel with shifts). More... | |
class | CWeightedDegreeRBFKernel |
weighted degree RBF kernel More... | |
class | CWeightedDegreeStringKernel |
The Weighted Degree String kernel. More... | |
class | CZeroMeanCenterKernelNormalizer |
ZeroMeanCenterKernelNormalizer centers the kernel in feature space. More... | |
class | CArray |
Template class Array implements a dense one dimensional array. More... | |
class | CArray2 |
Template class Array2 implements a dense two dimensional array. More... | |
class | CArray3 |
Template class Array3 implements a dense three dimensional array. More... | |
class | CBitString |
a string class embedding a string in a compact bit representation More... | |
class | CCache |
Template class Cache implements a simple cache. More... | |
class | CCompressor |
Compression library for compressing and decompressing buffers using one of the standard compression algorithms, LZO, GZIP, BZIP2 or LZMA. More... | |
class | SGVector |
shogun vector More... | |
class | SGMatrix |
shogun matrix More... | |
class | SGNDArray |
shogun n-dimensional array More... | |
struct | SGString |
shogun string More... | |
struct | SGStringList |
template class SGStringList More... | |
struct | SGSparseVectorEntry |
template class SGSparseVectorEntry More... | |
struct | SGSparseVector |
template class SGSparseVector More... | |
class | SGSparseMatrix |
template class SGSparseMatrix More... | |
struct | TSGDataType |
Datatypes that shogun supports. More... | |
class | CDynamicArray |
Template Dynamic array class that creates an array that can be used like a list or an array. More... | |
class | CDynamicObjectArray |
Template Dynamic array class that creates an array that can be used like a list or an array. More... | |
class | CDynInt |
integer type of dynamic size More... | |
class | CGCArray |
Template class GCArray implements a garbage collecting static array. More... | |
class | CHash |
Collection of Hashing Functions. More... | |
class | CHashSet |
the class HashSet, a set based on the hash-table. w: http://en.wikipedia.org/wiki/Hash_table More... | |
class | CIndirectObject |
an array class that accesses elements indirectly via an index array. More... | |
class | CListElement |
Class ListElement, defines how an element of the the list looks like. More... | |
class | CList |
Class List implements a doubly connected list for low-level-objects. More... | |
class | CSet |
Template Set class. More... | |
class | ShogunException |
Class ShogunException defines an exception which is thrown whenever an error inside of shogun occurs. More... | |
class | CSignal |
Class Signal implements signal handling to e.g. allow ctrl+c to cancel a long running process. More... | |
class | CTime |
Class Time that implements a stopwatch based on either cpu time or wall clock time. More... | |
class | CTrie |
Template class Trie implements a suffix trie, i.e. a tree in which all suffixes up to a certain length are stored. More... | |
class | v_array |
Class v_array is a templated class used to store variable length arrays. Memory locations are stored as 'extents', i.e., address of the first memory location and address after the last member. More... | |
class | CHingeLoss |
CHingeLoss implements the hinge loss function. More... | |
class | CLogLoss |
CLogLoss implements the logarithmic loss function. More... | |
class | CLogLossMargin |
Class CLogLossMargin implements a margin-based log-likelihood loss function. More... | |
class | CLossFunction |
Class CLossFunction is the base class of all loss functions. More... | |
class | CSmoothHingeLoss |
CSmoothHingeLoss implements the smooth hinge loss function. More... | |
class | CSquaredHingeLoss |
Class CSquaredHingeLoss implements a squared hinge loss function. More... | |
class | CSquaredLoss |
CSquaredLoss implements the squared loss function. More... | |
class | CDistanceMachine |
A generic DistanceMachine interface. More... | |
class | CKernelMachine |
A generic KernelMachine interface. More... | |
class | CLinearMachine |
Class LinearMachine is a generic interface for all kinds of linear machines like classifiers. More... | |
class | CMachine |
A generic learning machine interface. More... | |
class | COnlineLinearMachine |
Class OnlineLinearMachine is a generic interface for linear machines like classifiers which work through online algorithms. More... | |
class | CCplex |
Class CCplex to encapsulate access to the commercial cplex general purpose optimizer. More... | |
class | CLoss |
Class which collects generic mathematical functions. More... | |
class | CMath |
Class which collects generic mathematical functions. More... | |
class | CStatistics |
Class that contains certain functions related to statistics, such as the student's t distribution. More... | |
class | CGridSearchModelSelection |
Model selection class which searches for the best model by a grid- search. See CModelSelection for details. More... | |
class | CModelSelection |
Abstract base class for model selection. Takes a parameter tree which specifies parameters for model selection, and a cross-validation instance and searches for the best combination of parameters in the abstract method select_model(), which has to be implemented in concrete sub-classes. More... | |
class | CModelSelectionParameters |
Class to select parameters and their ranges for model selection. The structure is organized as a tree with different kinds of nodes, depending on the values of its member variables of name and CSGObject. More... | |
class | CParameterCombination |
class that holds ONE combination of parameters for a learning machine. The structure is organized as a tree. Every node may hold a name or an instance of a Parameter class. Nodes may have children. The nodes are organized in such way, that every parameter of a model for model selection has one node and sub-parameters are stored in sub-nodes. Using a tree of this class, parameters of models may easily be set. There are these types of nodes: More... | |
class | CDecompressString |
Preprocessor that decompresses compressed strings. More... | |
class | CDimensionReductionPreprocessor |
the class DimensionReductionPreprocessor, a base class for preprocessors used to lower the dimensionality of given simple features (dense matrices). More... | |
class | CHessianLocallyLinearEmbedding |
the class HessianLocallyLinearEmbedding used to preprocess data using Hessian Locally Linear Embedding algorithm described in More... | |
class | CIsomap |
the class Isomap used to preprocess data using K-Isomap algorithm as described in More... | |
class | CKernelLocallyLinearEmbedding |
the class KernelLocallyLinearEmbedding used to preprocess data using kernel extension of Locally Linear Embedding algorithm as described in More... | |
class | CKernelPCA |
Preprocessor KernelPCA performs kernel principal component analysis. More... | |
class | CLaplacianEigenmaps |
the class LaplacianEigenmaps used to preprocess data using Laplacian Eigenmaps algorithm as described in: More... | |
class | CLocallyLinearEmbedding |
the class LocallyLinearEmbedding used to preprocess data using Locally Linear Embedding algorithm described in More... | |
class | CLocalTangentSpaceAlignment |
the class LocalTangentSpaceAlignment used to preprocess data using Local Tangent Space Alignment (LTSA) algorithm as described in: More... | |
class | CLogPlusOne |
Preprocessor LogPlusOne does what the name says, it adds one to a dense real valued vector and takes the logarithm of each component of it. More... | |
class | CMultidimensionalScaling |
the class Multidimensionalscaling is used to perform multidimensional scaling (capable of landmark approximation if requested). More... | |
class | CNormOne |
Preprocessor NormOne, normalizes vectors to have norm 1. More... | |
class | CPCA |
Preprocessor PCACut performs principial component analysis on the input vectors and keeps only the n eigenvectors with eigenvalues above a certain threshold. More... | |
class | CPreprocessor |
Class Preprocessor defines a preprocessor interface. More... | |
class | CPruneVarSubMean |
Preprocessor PruneVarSubMean will substract the mean and remove features that have zero variance. More... | |
class | CRandomFourierGaussPreproc |
Preprocessor CRandomFourierGaussPreproc implements Random Fourier Features for the Gauss kernel a la Ali Rahimi and Ben Recht Nips2007 after preprocessing the features using them in a linear kernel approximates a gaussian kernel. More... | |
class | CSimplePreprocessor |
Template class SimplePreprocessor, base class for preprocessors (cf. CPreprocessor) that apply to CSimpleFeatures (i.e. rectangular dense matrices). More... | |
class | CSortUlongString |
Preprocessor SortUlongString, sorts the indivual strings in ascending order. More... | |
class | CSortWordString |
Preprocessor SortWordString, sorts the indivual strings in ascending order. More... | |
class | CSparsePreprocessor |
Template class SparsePreprocessor, base class for preprocessors (cf. CPreprocessor) that apply to CSparseFeatures. More... | |
class | CStringPreprocessor |
Template class StringPreprocessor, base class for preprocessors (cf. CPreprocessor) that apply to CStringFeatures (i.e. strings of variable length). More... | |
class | CKRR |
Class KRR implements Kernel Ridge Regression - a regularized least square method for classification and regression. More... | |
class | CLibSVR |
Class LibSVR, performs support vector regression using LibSVM. More... | |
class | CMKLRegression |
Multiple Kernel Learning for regression. More... | |
class | CSVRLight |
Class SVRLight, performs support vector regression using SVMLight. More... | |
class | CDynProg |
Dynamic Programming Class. More... | |
class | CIntronList |
class IntronList More... | |
class | CPlif |
class Plif More... | |
class | CPlifArray |
class PlifArray More... | |
class | CPlifBase |
class PlifBase More... | |
class | CPlifMatrix |
store plif arrays for all transitions in the model More... | |
class | CSegmentLoss |
class IntronList More... | |
class | CGUIClassifier |
UI classifier. More... | |
class | CGUIDistance |
UI distance. More... | |
class | CGUIFeatures |
UI features. More... | |
class | CGUIHMM |
UI HMM (Hidden Markov Model). More... | |
class | CGUIKernel |
UI kernel. More... | |
class | CGUILabels |
UI labels. More... | |
class | CGUIMath |
UI math. More... | |
class | CGUIPluginEstimate |
UI estimate. More... | |
class | CGUIPreprocessor |
UI preprocessor. More... | |
class | CGUIStructure |
UI structure. More... | |
class | CGUITime |
UI time. More... | |
Typedefs | |
typedef uint32_t(* | hash_func_t )(substring, uint32_t) |
Hash function typedef, takes a substring and seed as parameters. | |
typedef uint32_t | vw_size_t |
vw_size_t typedef to work across platforms | |
typedef int32_t(CVwParser::* | parse_func )(CIOBuffer *, VwExample *&) |
Parse function typedef. Takes an IOBuffer and VwExample as arguments. | |
typedef float64_t | KERNELCACHE_ELEM |
typedef int64_t | KERNELCACHE_IDX |
typedef int32_t | index_t |
HMM specific types | |
typedef float64_t | T_ALPHA_BETA_TABLE |
type for alpha/beta caching table | |
typedef uint8_t | T_STATES |
typedef T_STATES * | P_STATES |
convenience typedefs | |
typedef CDynInt< uint64_t, 3 > | uint192_t |
192 bit integer constructed out of 3 64bit uint64_t's | |
typedef CDynInt< uint64_t, 4 > | uint256_t |
256 bit integer constructed out of 4 64bit uint64_t's | |
typedef CDynInt< uint64_t, 8 > | uint512_t |
512 bit integer constructed out of 8 64bit uint64_t's | |
typedef CDynInt< uint64_t, 16 > | uint1024_t |
1024 bit integer constructed out of 16 64bit uint64_t's | |
Enumerations | |
enum | EModelSelectionAvailability { MS_NOT_AVAILABLE = 0, MS_AVAILABLE } |
enum | LIBLINEAR_SOLVER_TYPE { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR } |
enum | SCATTER_TYPE { NO_BIAS_LIBSVM, NO_BIAS_SVMLIGHT, TEST_RULE1, TEST_RULE2 } |
enum | EVwCacheType { C_NATIVE = 0, C_PROTOBUF = 1 } |
enum | E_VW_PARSER_TYPE { T_VW = 1, T_SVMLIGHT = 2, T_DENSE = 3 } |
The type of input to parse. More... | |
enum | EDistanceType { D_UNKNOWN = 0, D_MINKOWSKI = 10, D_MANHATTAN = 20, D_CANBERRA = 30, D_CHEBYSHEW = 40, D_GEODESIC = 50, D_JENSEN = 60, D_MANHATTANWORD = 70, D_HAMMINGWORD = 80, D_CANBERRAWORD = 90, D_SPARSEEUCLIDIAN = 100, D_EUCLIDIAN = 110, D_CHISQUARE = 120, D_TANIMOTO = 130, D_COSINE = 140, D_BRAYCURTIS = 150, D_CUSTOM = 160, D_ATTENUATEDEUCLIDIAN = 170 } |
enum | ECovType { FULL, DIAG, SPHERICAL } |
enum | BaumWelchViterbiType { BW_NORMAL, BW_TRANS, BW_DEFINED, VIT_NORMAL, VIT_DEFINED } |
enum | EContingencyTableMeasureType { ACCURACY = 0, ERROR_RATE = 10, BAL = 20, WRACC = 30, F1 = 40, CROSS_CORRELATION = 50, RECALL = 60, PRECISION = 70, SPECIFICITY = 80 } |
enum | EEvaluationDirection { ED_MINIMIZE, ED_MAXIMIZE } |
enum | EAlphabet { DNA = 0, RAWDNA = 1, RNA = 2, PROTEIN = 3, BINARY = 4, ALPHANUM = 5, CUBE = 6, RAWBYTE = 7, IUPAC_NUCLEIC_ACID = 8, IUPAC_AMINO_ACID = 9, NONE = 10, DIGIT = 11, DIGIT2 = 12, RAWDIGIT = 13, RAWDIGIT2 = 14, UNKNOWN = 15, SNP = 16, RAWSNP = 17 } |
Alphabet of charfeatures/observations. More... | |
enum | EFeatureType { F_UNKNOWN = 0, F_BOOL = 5, F_CHAR = 10, F_BYTE = 20, F_SHORT = 30, F_WORD = 40, F_INT = 50, F_UINT = 60, F_LONG = 70, F_ULONG = 80, F_SHORTREAL = 90, F_DREAL = 100, F_LONGREAL = 110, F_ANY = 1000 } |
shogun feature type More... | |
enum | EFeatureClass { C_UNKNOWN = 0, C_SIMPLE = 10, C_SPARSE = 20, C_STRING = 30, C_COMBINED = 40, C_COMBINED_DOT = 60, C_WD = 70, C_SPEC = 80, C_WEIGHTEDSPEC = 90, C_POLY = 100, C_STREAMING_SIMPLE = 110, C_STREAMING_SPARSE = 120, C_STREAMING_STRING = 130, C_STREAMING_VW = 140, C_ANY = 1000 } |
shogun feature class More... | |
enum | EFeatureProperty { FP_NONE = 0, FP_DOT = 1, FP_STREAMING_DOT = 2 } |
shogun feature properties More... | |
enum | E_EXAMPLE_TYPE { E_LABELLED = 1, E_UNLABELLED = 2 } |
enum | E_IS_EXAMPLE_USED { E_EMPTY = 1, E_NOT_USED = 2, E_USED = 3 } |
enum | EMessageType { MSG_GCDEBUG, MSG_DEBUG, MSG_INFO, MSG_NOTICE, MSG_WARN, MSG_ERROR, MSG_CRITICAL, MSG_ALERT, MSG_EMERGENCY, MSG_MESSAGEONLY } |
enum | EOptimizationType { FASTBUTMEMHUNGRY, SLOWBUTMEMEFFICIENT } |
enum | EKernelType { K_UNKNOWN = 0, K_LINEAR = 10, K_POLY = 20, K_GAUSSIAN = 30, K_GAUSSIANSHIFT = 32, K_GAUSSIANMATCH = 33, K_HISTOGRAM = 40, K_SALZBERG = 41, K_LOCALITYIMPROVED = 50, K_SIMPLELOCALITYIMPROVED = 60, K_FIXEDDEGREE = 70, K_WEIGHTEDDEGREE = 80, K_WEIGHTEDDEGREEPOS = 81, K_WEIGHTEDDEGREERBF = 82, K_WEIGHTEDCOMMWORDSTRING = 90, K_POLYMATCH = 100, K_ALIGNMENT = 110, K_COMMWORDSTRING = 120, K_COMMULONGSTRING = 121, K_SPECTRUMRBF = 122, K_SPECTRUMMISMATCHRBF = 123, K_COMBINED = 140, K_AUC = 150, K_CUSTOM = 160, K_SIGMOID = 170, K_CHI2 = 180, K_DIAG = 190, K_CONST = 200, K_DISTANCE = 220, K_LOCALALIGNMENT = 230, K_PYRAMIDCHI2 = 240, K_OLIGO = 250, K_MATCHWORD = 260, K_TPPK = 270, K_REGULATORYMODULES = 280, K_SPARSESPATIALSAMPLE = 290, K_HISTOGRAMINTERSECTION = 300, K_WAVELET = 310, K_WAVE = 320, K_CAUCHY = 330, K_TSTUDENT = 340, K_RATIONAL_QUADRATIC = 350, K_MULTIQUADRIC = 360, K_EXPONENTIAL = 370, K_SPHERICAL = 380, K_SPLINE = 390, K_ANOVA = 400, K_POWER = 410, K_LOG = 420, K_CIRCULAR = 430, K_INVERSEMULTIQUADRIC = 440, K_DISTANTSEGMENTS = 450, K_BESSEL = 460 } |
enum | EKernelProperty { KP_NONE = 0, KP_LINADD = 1, KP_KERNCOMBINATION = 2, KP_BATCHEVALUATION = 4 } |
enum | ENormalizerType { N_REGULAR = 0, N_MULTITASK = 1 } |
enum | EWDKernType { E_WD = 0, E_EXTERNAL = 1, E_BLOCK_CONST = 2, E_BLOCK_LINEAR = 3, E_BLOCK_SQPOLY = 4, E_BLOCK_CUBICPOLY = 5, E_BLOCK_EXP = 6, E_BLOCK_LOG = 7 } |
enum | E_COMPRESSION_TYPE { UNCOMPRESSED, LZO, GZIP, BZIP2, LZMA, SNAPPY } |
enum | ELossType { L_HINGELOSS = 0, L_SMOOTHHINGELOSS = 10, L_SQUAREDHINGELOSS = 20, L_SQUAREDLOSS = 30, L_LOGLOSS = 100, L_LOGLOSSMARGIN = 110 } |
shogun loss type More... | |
enum | EClassifierType { CT_NONE = 0, CT_LIGHT = 10, CT_LIGHTONECLASS = 11, CT_LIBSVM = 20, CT_LIBSVMONECLASS = 30, CT_LIBSVMMULTICLASS = 40, CT_MPD = 50, CT_GPBT = 60, CT_CPLEXSVM = 70, CT_PERCEPTRON = 80, CT_KERNELPERCEPTRON = 90, CT_LDA = 100, CT_LPM = 110, CT_LPBOOST = 120, CT_KNN = 130, CT_SVMLIN = 140, CT_KRR = 150, CT_GNPPSVM = 160, CT_GMNPSVM = 170, CT_SUBGRADIENTSVM = 180, CT_SUBGRADIENTLPM = 190, CT_SVMPERF = 200, CT_LIBSVR = 210, CT_SVRLIGHT = 220, CT_LIBLINEAR = 230, CT_KMEANS = 240, CT_HIERARCHICAL = 250, CT_SVMOCAS = 260, CT_WDSVMOCAS = 270, CT_SVMSGD = 280, CT_MKLMULTICLASS = 290, CT_MKLCLASSIFICATION = 300, CT_MKLONECLASS = 310, CT_MKLREGRESSION = 320, CT_SCATTERSVM = 330, CT_DASVM = 340, CT_LARANK = 350, CT_DASVMLINEAR = 360, CT_GAUSSIANNAIVEBAYES = 370, CT_AVERAGEDPERCEPTRON = 380, CT_SGDQN = 390 } |
enum | ESolverType { ST_AUTO = 0, ST_CPLEX = 1, ST_GLPK = 2, ST_NEWTON = 3, ST_DIRECT = 4, ST_ELASTICNET = 5, ST_BLOCK_NORM = 6 } |
enum | E_PROB_TYPE { E_LINEAR, E_QP } |
enum | ERangeType { R_LINEAR, R_EXP, R_LOG } |
enum | EMSParamType { MSPT_NONE = 0, MSPT_FLOAT64, MSPT_INT32 } |
enum | EPCAMode { THRESHOLD, VARIANCE_EXPLAINED, FIXED_NUMBER } |
enum | EPreprocessorType { P_UNKNOWN = 0, P_NORMONE = 10, P_LOGPLUSONE = 20, P_SORTWORDSTRING = 30, P_SORTULONGSTRING = 40, P_SORTWORD = 50, P_PRUNEVARSUBMEAN = 60, P_DECOMPRESSSTRING = 70, P_DECOMPRESSCHARSTRING = 80, P_DECOMPRESSBYTESTRING = 90, P_DECOMPRESSWORDSTRING = 100, P_DECOMPRESSULONGSTRING = 110, P_RANDOMFOURIERGAUSS = 120, P_PCA = 130, P_KERNELPCA = 140, P_NORMDERIVATIVELEM3 = 150, P_DIMENSIONREDUCTIONPREPROCESSOR = 160, P_MULTIDIMENSIONALSCALING = 170, P_LOCALLYLINEAREMBEDDING = 180, P_ISOMAP = 190, P_HESSIANLOCALLYLINEAREMBEDDING = 200, P_LOCALTANGENTSPACEALIGNMENT = 210, P_LAPLACIANEIGENMAPS = 220, P_KERNELLOCALLYLINEAREMBEDDING = 230 } |
enum | ERegressionType { RT_NONE = 0, RT_LIGHT = 10, RT_LIBSVM = 20 } |
type of regressor More... | |
enum | ETransformType { T_LINEAR, T_LOG, T_LOG_PLUS1, T_LOG_PLUS3, T_LINEAR_PLUS3 } |
Functions | |
CSGObject * | new_sgserializable (const char *sgserializable_name, EPrimitiveType generic) |
void | init_shogun (void(*print_message)(FILE *target, const char *str), void(*print_warning)(FILE *target, const char *str), void(*print_error)(FILE *target, const char *str), void(*cancel_computations)(bool &delayed, bool &immediately)) |
void | sg_global_print_default (FILE *target, const char *str) |
void | init_shogun_with_defaults () |
void | exit_shogun () |
void | set_global_io (SGIO *io) |
SGIO * | get_global_io () |
void | set_global_parallel (Parallel *parallel) |
Parallel * | get_global_parallel () |
void | set_global_version (Version *version) |
Version * | get_global_version () |
void | set_global_math (CMath *math) |
CMath * | get_global_math () |
int32_t | InnerProjector (int32_t method, int32_t n, int32_t *iy, float64_t e, float64_t *qk, float64_t l, float64_t u, float64_t *x, float64_t &lambda) |
int32_t | gvpm (int32_t Projector, int32_t n, float32_t *vecA, float64_t *b, float64_t c, float64_t e, int32_t *iy, float64_t *x, float64_t tol, int32_t *ls, int32_t *proj) |
int32_t | FletcherAlg2A (int32_t Projector, int32_t n, float32_t *vecA, float64_t *b, float64_t c, float64_t e, int32_t *iy, float64_t *x, float64_t tol, int32_t *ls, int32_t *proj) |
int32_t | gpm_solver (int32_t Solver, int32_t Projector, int32_t n, float32_t *A, float64_t *b, float64_t c, float64_t e, int32_t *iy, float64_t *x, float64_t tol, int32_t *ls, int32_t *proj) |
float64_t | ProjectR (float64_t *x, int32_t n, float64_t lambda, int32_t *a, float64_t b, float64_t *c, float64_t l, float64_t u) |
int32_t | ProjectDai (int32_t n, int32_t *a, float64_t b, float64_t *c, float64_t l, float64_t u, float64_t *x, float64_t &lam_ext) |
float64_t | quick_select (float64_t *arr, int32_t n) |
int32_t | Pardalos (int32_t n, int32_t *iy, float64_t e, float64_t *qk, float64_t low, float64_t up, float64_t *x) |
static larank_kcache_t * | larank_kcache_create (CKernel *kernelfunc) |
static void | xtruncate (larank_kcache_t *self, int32_t k, int32_t nlen) |
static void | xpurge (larank_kcache_t *self) |
static void | larank_kcache_set_maximum_size (larank_kcache_t *self, int64_t entries) |
static void | larank_kcache_destroy (larank_kcache_t *self) |
static void | xminsize (larank_kcache_t *self, int32_t n) |
static int32_t * | larank_kcache_r2i (larank_kcache_t *self, int32_t n) |
static void | xextend (larank_kcache_t *self, int32_t k, int32_t nlen) |
static void | xswap (larank_kcache_t *self, int32_t i1, int32_t i2, int32_t r1, int32_t r2) |
static void | larank_kcache_swap_rr (larank_kcache_t *self, int32_t r1, int32_t r2) |
static void | larank_kcache_swap_ri (larank_kcache_t *self, int32_t r1, int32_t i2) |
static float64_t | xquery (larank_kcache_t *self, int32_t i, int32_t j) |
static float64_t | larank_kcache_query (larank_kcache_t *self, int32_t i, int32_t j) |
static void | larank_kcache_set_buddy (larank_kcache_t *self, larank_kcache_t *buddy) |
static float32_t * | larank_kcache_query_row (larank_kcache_t *self, int32_t i, int32_t len) |
static const float64_t * | get_col (uint32_t i) |
static float64_t | get_time () |
ocas_return_value_T | svm_ocas_solver (float64_t C, uint32_t nData, float64_t TolRel, float64_t TolAbs, float64_t QPBound, float64_t MaxTime, uint32_t _BufSize, uint8_t Method, void(*compute_W)(float64_t *, float64_t *, float64_t *, uint32_t, void *), float64_t(*update_W)(float64_t, void *), int(*add_new_cut)(float64_t *, uint32_t *, uint32_t, uint32_t, void *), int(*compute_output)(float64_t *, void *), int(*sort)(float64_t *, float64_t *, uint32_t), void(*ocas_print)(ocas_return_value_T), void *user_data) |
ocas_return_value_T | svm_ocas_solver_difC (float64_t *C, uint32_t nData, float64_t TolRel, float64_t TolAbs, float64_t QPBound, float64_t MaxTime, uint32_t _BufSize, uint8_t Method, void(*compute_W)(float64_t *, float64_t *, float64_t *, uint32_t, void *), float64_t(*update_W)(float64_t, void *), int(*add_new_cut)(float64_t *, uint32_t *, uint32_t, uint32_t, void *), int(*compute_output)(float64_t *, void *), int(*sort)(float64_t *, float64_t *, uint32_t), void(*ocas_print)(ocas_return_value_T), void *user_data) |
static void | findactive (float64_t *Theta, float64_t *SortedA, uint32_t *nSortedA, float64_t *A, float64_t *B, int n, int(*sort)(float64_t *, float64_t *, uint32_t)) |
ocas_return_value_T | msvm_ocas_solver (float64_t C, float64_t *data_y, uint32_t nY, uint32_t nData, float64_t TolRel, float64_t TolAbs, float64_t QPBound, float64_t MaxTime, uint32_t _BufSize, uint8_t Method, void(*compute_W)(float64_t *, float64_t *, float64_t *, uint32_t, void *), float64_t(*update_W)(float64_t, void *), int(*add_new_cut)(float64_t *, uint32_t *, uint32_t, void *), int(*compute_output)(float64_t *, void *), int(*sort)(float64_t *, float64_t *, uint32_t), void(*ocas_print)(ocas_return_value_T), void *user_data) |
libqp_state_T | libqp_splx_solver (const float64_t *(*get_col)(uint32_t), float64_t *diag_H, float64_t *f, float64_t *b, uint32_t *I, uint8_t *S, float64_t *x, uint32_t n, uint32_t MaxIter, float64_t TolAbs, float64_t TolRel, float64_t QP_TH, void(*print_state)(libqp_state_T state)) |
libqp_state_T | libqp_gsmo_solver (const float64_t *(*get_col)(uint32_t), float64_t *diag_H, float64_t *f, float64_t *a, float64_t b, float64_t *LB, float64_t *UB, float64_t *x, uint32_t n, uint32_t MaxIter, float64_t TolKKT, void(*print_state)(libqp_state_T state)) |
void | nrerror (char error_text[]) |
bool | choldc (float64_t *a, int32_t n, float64_t *p) |
void | cholsb (float64_t a[], int32_t n, float64_t p[], float64_t b[], float64_t x[]) |
void | chol_forward (float64_t a[], int32_t n, float64_t p[], float64_t b[], float64_t x[]) |
void | chol_backward (float64_t a[], int32_t n, float64_t p[], float64_t b[], float64_t x[]) |
bool | solve_reduced (int32_t n, int32_t m, float64_t h_x[], float64_t h_y[], float64_t a[], float64_t x_x[], float64_t x_y[], float64_t c_x[], float64_t c_y[], float64_t workspace[], int32_t step) |
void | matrix_vector (int32_t n, float64_t m[], float64_t x[], float64_t y[]) |
int32_t | pr_loqo (int32_t n, int32_t m, float64_t c[], float64_t h_x[], float64_t a[], float64_t b[], float64_t l[], float64_t u[], float64_t primal[], float64_t dual[], int32_t verb, float64_t sigfig_max, int32_t counter_max, float64_t margin, float64_t bound, int32_t restart) |
void | ssl_train (struct data *Data, struct options *Options, struct vector_double *Weights, struct vector_double *Outputs) |
int32_t | CGLS (const struct data *Data, const struct options *Options, const struct vector_int *Subset, struct vector_double *Weights, struct vector_double *Outputs) |
int32_t | L2_SVM_MFN (const struct data *Data, struct options *Options, struct vector_double *Weights, struct vector_double *Outputs, int32_t ini) |
float64_t | line_search (float64_t *w, float64_t *w_bar, float64_t lambda, float64_t *o, float64_t *o_bar, float64_t *Y, float64_t *C, int32_t d, int32_t l) |
int32_t | TSVM_MFN (const struct data *Data, struct options *Options, struct vector_double *Weights, struct vector_double *Outputs) |
int32_t | switch_labels (float64_t *Y, float64_t *o, int32_t *JU, int32_t u, int32_t S) |
int32_t | DA_S3VM (struct data *Data, struct options *Options, struct vector_double *Weights, struct vector_double *Outputs) |
int32_t | optimize_w (const struct data *Data, const float64_t *p, struct options *Options, struct vector_double *Weights, struct vector_double *Outputs, int32_t ini) |
void | optimize_p (const float64_t *g, int32_t u, float64_t T, float64_t r, float64_t *p) |
float64_t | transductive_cost (float64_t normWeights, float64_t *Y, float64_t *Outputs, int32_t m, float64_t lambda, float64_t lambda_u) |
float64_t | entropy (const float64_t *p, int32_t u) |
float64_t | KL (const float64_t *p, const float64_t *q, int32_t u) |
float64_t | norm_square (const vector_double *A) |
void | initialize (struct vector_double *A, int32_t k, float64_t a) |
void | initialize (struct vector_int *A, int32_t k) |
void | GetLabeledData (struct data *D, const struct data *Data) |
float32_t | sd_offset_add (float32_t *weights, vw_size_t mask, VwFeature *begin, VwFeature *end, vw_size_t offset) |
float32_t | sd_offset_truncadd (float32_t *weights, vw_size_t mask, VwFeature *begin, VwFeature *end, vw_size_t offset, float32_t gravity) |
float32_t | one_pf_quad_predict (float32_t *weights, VwFeature &f, v_array< VwFeature > &cross_features, vw_size_t mask) |
float32_t | one_pf_quad_predict_trunc (float32_t *weights, VwFeature &f, v_array< VwFeature > &cross_features, vw_size_t mask, float32_t gravity) |
float32_t | real_weight (float32_t w, float32_t gravity) |
void * | sqdist_thread_func (void *P) |
bool | read_real_valued_sparse (SGSparseVector< float64_t > *&matrix, int32_t &num_feat, int32_t &num_vec) |
bool | write_real_valued_sparse (const SGSparseVector< float64_t > *matrix, int32_t num_feat, int32_t num_vec) |
bool | read_real_valued_dense (float64_t *&matrix, int32_t &num_feat, int32_t &num_vec) |
bool | write_real_valued_dense (const float64_t *matrix, int32_t num_feat, int32_t num_vec) |
bool | read_char_valued_strings (SGString< char > *&strings, int32_t &num_str, int32_t &max_string_len) |
bool | write_char_valued_strings (const SGString< char > *strings, int32_t num_str) |
char * | c_string_of_substring (substring s) |
void | print_substring (substring s) |
float32_t | float_of_substring (substring s) |
float64_t | double_of_substring (substring s) |
int32_t | int_of_substring (substring s) |
uint32_t | ulong_of_substring (substring s) |
uint32_t | ss_length (substring s) |
void | wrap_dsyev (char jobz, char uplo, int n, double *a, int lda, double *w, int *info) |
void | wrap_dgesvd (char jobu, char jobvt, int m, int n, double *a, int lda, double *sing, double *u, int ldu, double *vt, int ldvt, int *info) |
void | wrap_dgeqrf (int m, int n, double *a, int lda, double *tau, int *info) |
void | wrap_dorgqr (int m, int n, int k, double *a, int lda, double *tau, int *info) |
void | wrap_dsyevr (char jobz, char uplo, int n, double *a, int lda, int il, int iu, double *eigenvalues, double *eigenvectors, int *info) |
void | wrap_dsygvx (int itype, char jobz, char uplo, int n, double *a, int lda, double *b, int ldb, int il, int iu, double *eigenvalues, double *eigenvectors, int *info) |
template<class T > | |
SGVector< T > | create_range_array (T min, T max, ERangeType type, T step, T type_base) |
Variables | |
Parallel * | sg_parallel = NULL |
SGIO * | sg_io = NULL |
Version * | sg_version = NULL |
CMath * | sg_math = NULL |
void(* | sg_print_message )(FILE *target, const char *str) = NULL |
function called to print normal messages | |
void(* | sg_print_warning )(FILE *target, const char *str) = NULL |
function called to print warning messages | |
void(* | sg_print_error )(FILE *target, const char *str) = NULL |
function called to print error messages | |
void(* | sg_cancel_computations )(bool &delayed, bool &immediately) = NULL |
function called to cancel things | |
uint32_t | Randnext |
static const uint32_t | QPSolverMaxIter = 10000000 |
static float64_t * | H |
static uint32_t | BufSize |
const int32_t | quadratic_constant = 27942141 |
Constant used while hashing/accessing quadratic features. | |
const int32_t | constant_hash = 11650396 |
Constant used to access the constant feature. | |
const uint32_t | hash_base = 97562527 |
Seed for hash. |
all of classes and functions are contained in the shogun namespace
typedef uint32_t(* hash_func_t)(substring, uint32_t) |
Hash function typedef, takes a substring and seed as parameters.
Definition at line 21 of file vw_constants.h.
typedef int32_t index_t |
index
Definition at line 22 of file DataType.h.
typedef float64_t KERNELCACHE_ELEM |
typedef int64_t KERNELCACHE_IDX |
typedef int32_t(CVwParser::* parse_func)(CIOBuffer *, VwExample *&) |
Parse function typedef. Takes an IOBuffer and VwExample as arguments.
Definition at line 20 of file StreamingVwFile.h.
typedef float64_t T_ALPHA_BETA_TABLE |
typedef uint8_t T_STATES |
typedef CDynInt<uint64_t,16> uint1024_t |
typedef uint32_t vw_size_t |
vw_size_t typedef to work across platforms
Definition at line 24 of file vw_constants.h.
enum BaumWelchViterbiType |
enum E_COMPRESSION_TYPE |
compression type
Definition at line 26 of file Compressor.h.
enum E_EXAMPLE_TYPE |
Type of example, either E_LABELLED or E_UNLABELLED
Definition at line 26 of file InputParser.h.
enum E_IS_EXAMPLE_USED |
Specifies whether location is empty, contains an unused example or a used example.
Definition at line 23 of file ParseBuffer.h.
enum E_PROB_TYPE |
enum E_VW_PARSER_TYPE |
The type of input to parse.
Definition at line 28 of file VwParser.h.
enum EAlphabet |
Alphabet of charfeatures/observations.
Definition at line 21 of file Alphabet.h.
enum EClassifierType |
classifier type
type of measure
Definition at line 25 of file ContingencyTableEvaluation.h.
enum ECovType |
Covariance type
Definition at line 29 of file Gaussian.h.
enum EDistanceType |
type of distance
Definition at line 33 of file Distance.h.
enum EEvaluationDirection |
enum which is used to define whether an evaluation criterium has to be minimised or maximised
Definition at line 24 of file Evaluation.h.
enum EFeatureClass |
shogun feature class
C_UNKNOWN | |
C_SIMPLE | |
C_SPARSE | |
C_STRING | |
C_COMBINED | |
C_COMBINED_DOT | |
C_WD | |
C_SPEC | |
C_WEIGHTEDSPEC | |
C_POLY | |
C_STREAMING_SIMPLE | |
C_STREAMING_SPARSE | |
C_STREAMING_STRING | |
C_STREAMING_VW | |
C_ANY |
Definition at line 35 of file FeatureTypes.h.
enum EFeatureProperty |
shogun feature properties
Definition at line 55 of file FeatureTypes.h.
enum EFeatureType |
shogun feature type
F_UNKNOWN | |
F_BOOL | |
F_CHAR | |
F_BYTE | |
F_SHORT | |
F_WORD | |
F_INT | |
F_UINT | |
F_LONG | |
F_ULONG | |
F_SHORTREAL | |
F_DREAL | |
F_LONGREAL | |
F_ANY |
Definition at line 16 of file FeatureTypes.h.
enum EKernelProperty |
enum EKernelType |
kernel type
enum ELossType |
shogun loss type
L_HINGELOSS | |
L_SMOOTHHINGELOSS | |
L_SQUAREDHINGELOSS | |
L_SQUAREDLOSS | |
L_LOGLOSS | |
L_LOGLOSSMARGIN |
Definition at line 26 of file LossFunction.h.
enum EMessageType |
The io libs output [DEBUG] etc in front of every message 'higher' messages filter output depending on the loglevel, i.e. CRITICAL messages will print all MSG_CRITICAL TO MSG_EMERGENCY messages.
model selection availability
Definition at line 62 of file SGObject.h.
enum EMSParamType |
value type of a model selection parameter node
Definition at line 29 of file ModelSelectionParameters.h.
enum ENormalizerType |
enum EOptimizationType |
enum EPCAMode |
enum EPreprocessorType |
enumeration of possible preprocessor types
Definition at line 30 of file Preprocessor.h.
enum ERangeType |
type of range
Definition at line 23 of file ModelSelectionParameters.h.
enum ERegressionType |
type of regressor
Definition at line 17 of file Regression.h.
enum ESolverType |
enum ETransformType |
enum EVwCacheType |
Enum EVwCacheType specifies the type of cache used, either C_NATIVE or C_PROTOBUF.
Definition at line 29 of file VwCacheReader.h.
enum EWDKernType |
WD kernel type
E_WD | |
E_EXTERNAL | |
E_BLOCK_CONST | |
E_BLOCK_LINEAR | |
E_BLOCK_SQPOLY | |
E_BLOCK_CUBICPOLY | |
E_BLOCK_EXP | |
E_BLOCK_LOG |
Definition at line 25 of file WeightedDegreeStringKernel.h.
liblinar solver type
Definition at line 25 of file LibLinear.h.
enum SCATTER_TYPE |
scatter svm variant
NO_BIAS_LIBSVM |
no bias w/ libsvm |
NO_BIAS_SVMLIGHT |
no bias w/ svmlight |
TEST_RULE1 |
training with bias using test rule 1 |
TEST_RULE2 |
training with bias using test rule 2 |
Definition at line 25 of file ScatterSVM.h.
char* shogun::c_string_of_substring | ( | substring | s | ) |
int32_t shogun::CGLS | ( | const struct data * | Data, | |
const struct options * | Options, | |||
const struct vector_int * | Subset, | |||
struct vector_double * | Weights, | |||
struct vector_double * | Outputs | |||
) |
void shogun::chol_backward | ( | float64_t | a[], | |
int32_t | n, | |||
float64_t | p[], | |||
float64_t | b[], | |||
float64_t | x[] | |||
) |
Definition at line 169 of file pr_loqo.cpp.
Definition at line 156 of file pr_loqo.cpp.
Definition at line 61 of file pr_loqo.cpp.
Definition at line 132 of file pr_loqo.cpp.
SGVector<T> shogun::create_range_array | ( | T | min, | |
T | max, | |||
ERangeType | type, | |||
T | step, | |||
T | type_base | |||
) |
Creates an array of values specified by the parameters. A minimum and a maximum is specified, step interval, and an ERangeType (s. above) of the range, which is used to fill an array with concrete values. For some range types, a base is required. All values are given by void pointers to them (type conversion is done via m_value_type variable).
min | minimum of desired range. Requires min<max | |
max | maximum of desired range. Requires min<max | |
type | the way the values are created, see ERangeType | |
step | increment instaval for the values | |
type_base | base for EXP or LOG ranges |
Definition at line 167 of file ModelSelectionParameters.h.
int32_t shogun::DA_S3VM | ( | struct data * | Data, | |
struct options * | Options, | |||
struct vector_double * | Weights, | |||
struct vector_double * | Outputs | |||
) |
float64_t shogun::double_of_substring | ( | substring | s | ) |
void exit_shogun | ( | ) |
This function must be called when one stops using libshogun. It will perform a number of cleanups
static void shogun::findactive | ( | float64_t * | Theta, | |
float64_t * | SortedA, | |||
uint32_t * | nSortedA, | |||
float64_t * | A, | |||
float64_t * | B, | |||
int | n, | |||
int(*)(float64_t *, float64_t *, uint32_t) | sort | |||
) | [static] |
Definition at line 937 of file libocas.cpp.
float32_t shogun::float_of_substring | ( | substring | s | ) |
static const float64_t* shogun::get_col | ( | uint32_t | i | ) | [static] |
Definition at line 38 of file libocas.cpp.
SGIO * get_global_io | ( | ) |
get the global io object
CMath * get_global_math | ( | ) |
get the global math object
Parallel * get_global_parallel | ( | ) |
get the global parallel object
Version * get_global_version | ( | ) |
get the global version object
static float64_t shogun::get_time | ( | ) | [static] |
Definition at line 46 of file libocas.cpp.
void shogun::GetLabeledData | ( | struct data * | D, | |
const struct data * | Data | |||
) |
int32_t gpm_solver | ( | int32_t | Solver, | |
int32_t | Projector, | |||
int32_t | n, | |||
float32_t * | A, | |||
float64_t * | b, | |||
float64_t | c, | |||
float64_t | e, | |||
int32_t * | iy, | |||
float64_t * | x, | |||
float64_t | tol, | |||
int32_t * | ls = 0 , |
|||
int32_t * | proj = 0 | |||
) |
gpm solver
Solver | ||
Projector | ||
n | ||
A | ||
b | ||
c | ||
e | ||
iy | ||
x | ||
tol | ||
ls | ||
proj |
void init_shogun | ( | void(*)(FILE *target, const char *str) | print_message = NULL , |
|
void(*)(FILE *target, const char *str) | print_warning = NULL , |
|||
void(*)(FILE *target, const char *str) | print_error = NULL , |
|||
void(*)(bool &delayed, bool &immediately) | cancel_computations = NULL | |||
) |
This function must be called before libshogun is used. Usually shogun does not provide any output messages (neither debugging nor error; apart from exceptions). This function allows one to specify customized output callback functions and a callback function to check for exceptions:
print_message | function pointer to print a message | |
print_warning | function pointer to print a warning message | |
print_error | function pointer to print an error message (this will be printed before shogun throws an exception) | |
cancel_computations | function pointer to check for exception |
void init_shogun_with_defaults | ( | ) |
init shogun with defaults
void shogun::initialize | ( | struct vector_double * | A, | |
int32_t | k, | |||
float64_t | a | |||
) |
void shogun::initialize | ( | struct vector_int * | A, | |
int32_t | k | |||
) |
int32_t shogun::int_of_substring | ( | substring | s | ) |
int32_t shogun::L2_SVM_MFN | ( | const struct data * | Data, | |
struct options * | Options, | |||
struct vector_double * | Weights, | |||
struct vector_double * | Outputs, | |||
int32_t | ini | |||
) |
static larank_kcache_t* shogun::larank_kcache_create | ( | CKernel * | kernelfunc | ) | [static] |
Definition at line 63 of file LaRank.cpp.
static void shogun::larank_kcache_destroy | ( | larank_kcache_t * | self | ) | [static] |
Definition at line 131 of file LaRank.cpp.
static float64_t shogun::larank_kcache_query | ( | larank_kcache_t * | self, | |
int32_t | i, | |||
int32_t | j | |||
) | [static] |
Definition at line 322 of file LaRank.cpp.
static float32_t* shogun::larank_kcache_query_row | ( | larank_kcache_t * | self, | |
int32_t | i, | |||
int32_t | len | |||
) | [static] |
Definition at line 354 of file LaRank.cpp.
static int32_t* shogun::larank_kcache_r2i | ( | larank_kcache_t * | self, | |
int32_t | n | |||
) | [static] |
Definition at line 195 of file LaRank.cpp.
static void shogun::larank_kcache_set_buddy | ( | larank_kcache_t * | self, | |
larank_kcache_t * | buddy | |||
) | [static] |
Definition at line 331 of file LaRank.cpp.
static void shogun::larank_kcache_set_maximum_size | ( | larank_kcache_t * | self, | |
int64_t | entries | |||
) | [static] |
Definition at line 123 of file LaRank.cpp.
static void shogun::larank_kcache_swap_ri | ( | larank_kcache_t * | self, | |
int32_t | r1, | |||
int32_t | i2 | |||
) | [static] |
Definition at line 288 of file LaRank.cpp.
static void shogun::larank_kcache_swap_rr | ( | larank_kcache_t * | self, | |
int32_t | r1, | |||
int32_t | r2 | |||
) | [static] |
Definition at line 282 of file LaRank.cpp.
libqp_state_T shogun::libqp_gsmo_solver | ( | const float64_t *(*)(uint32_t) | get_col, | |
float64_t * | diag_H, | |||
float64_t * | f, | |||
float64_t * | a, | |||
float64_t | b, | |||
float64_t * | LB, | |||
float64_t * | UB, | |||
float64_t * | x, | |||
uint32_t | n, | |||
uint32_t | MaxIter, | |||
float64_t | TolKKT, | |||
void(*)(libqp_state_T state) | print_state | |||
) |
Generalized SMO algorithm
libqp_state_T libqp_splx_solver | ( | const float64_t *(*)(uint32_t) | get_col, | |
float64_t * | diag_H, | |||
float64_t * | f, | |||
float64_t * | b, | |||
uint32_t * | I, | |||
uint8_t * | S, | |||
float64_t * | x, | |||
uint32_t | n, | |||
uint32_t | MaxIter, | |||
float64_t | TolAbs, | |||
float64_t | TolRel, | |||
float64_t | QP_TH, | |||
void(*)(libqp_state_T state) | print_state | |||
) |
QP solver for tasks with simplex constraints
Definition at line 83 of file libqp_splx.cpp.
Definition at line 270 of file pr_loqo.cpp.
ocas_return_value_T shogun::msvm_ocas_solver | ( | float64_t | C, | |
float64_t * | data_y, | |||
uint32_t | nY, | |||
uint32_t | nData, | |||
float64_t | TolRel, | |||
float64_t | TolAbs, | |||
float64_t | QPBound, | |||
float64_t | MaxTime, | |||
uint32_t | _BufSize, | |||
uint8_t | Method, | |||
void(*)(float64_t *, float64_t *, float64_t *, uint32_t, void *) | compute_W, | |||
float64_t(*)(float64_t, void *) | update_W, | |||
int(*)(float64_t *, uint32_t *, uint32_t, void *) | add_new_cut, | |||
int(*)(float64_t *, void *) | compute_output, | |||
int(*)(float64_t *, float64_t *, uint32_t) | sort, | |||
void(*)(ocas_return_value_T) | ocas_print, | |||
void * | user_data | |||
) |
Definition at line 994 of file libocas.cpp.
CSGObject* shogun::new_sgserializable | ( | const char * | sgserializable_name, | |
EPrimitiveType | generic | |||
) |
new shogun serializable
sgserializable_name | ||
generic |
void shogun::nrerror | ( | char | error_text[] | ) |
Definition at line 45 of file pr_loqo.cpp.
float32_t one_pf_quad_predict | ( | float32_t * | weights, | |
VwFeature & | f, | |||
v_array< VwFeature > & | cross_features, | |||
vw_size_t | mask | |||
) |
Get the prediction contribution from one feature.
weights | weights | |
f | feature | |
cross_features | paired features | |
mask | mask |
float32_t one_pf_quad_predict_trunc | ( | float32_t * | weights, | |
VwFeature & | f, | |||
v_array< VwFeature > & | cross_features, | |||
vw_size_t | mask, | |||
float32_t | gravity | |||
) |
Get the prediction contribution from one feature.
Weights are taken as truncated weights.
weights | weights | |
f | feature | |
cross_features | paired features | |
mask | mask | |
gravity | weight threshold value |
int32_t shogun::optimize_w | ( | const struct data * | Data, | |
const float64_t * | p, | |||
struct options * | Options, | |||
struct vector_double * | Weights, | |||
struct vector_double * | Outputs, | |||
int32_t | ini | |||
) |
int32_t pr_loqo | ( | int32_t | n, | |
int32_t | m, | |||
float64_t | c[], | |||
float64_t | h_x[], | |||
float64_t | a[], | |||
float64_t | b[], | |||
float64_t | l[], | |||
float64_t | u[], | |||
float64_t | primal[], | |||
float64_t | dual[], | |||
int32_t | verb, | |||
float64_t | sigfig_max, | |||
int32_t | counter_max, | |||
float64_t | margin, | |||
float64_t | bound, | |||
int32_t | restart | |||
) |
n : number of primal variables m : number of constraints (typically 1) h_x : dot product matrix (n.n) a : constraint matrix (n.m) b : constant term (m) l : lower bound (n) u : upper bound (m)
primal : workspace for primal variables, has to be of size 3 n
x = primal; n g = x + n; n t = g + n; n
dual : workspace for dual variables, has to be of size m + 2 n
y = dual; m z = y + m; n s = z + n; n
verb : verbosity level sigfig_max : number of significant digits counter_max: stopping criterion restart : 1 if restart desired
void shogun::print_substring | ( | substring | s | ) |
bool shogun::read_char_valued_strings | ( | SGString< char > *& | strings, | |
int32_t & | num_str, | |||
int32_t & | max_string_len | |||
) |
read char string features, simple ascii format e.g. foo bar ACGTACGTATCT
two strings
strings | strings to read into | |
num_str | number of strings | |
max_string_len | length of longest string |
bool shogun::read_real_valued_dense | ( | float64_t *& | matrix, | |
int32_t & | num_feat, | |||
int32_t & | num_vec | |||
) |
read dense real valued features, simple ascii format e.g. 1.0 1.1 0.2 2.3 3.5 5
a matrix that consists of 3 vectors with each of 2d
matrix | matrix to read into | |
num_feat | number of features for each vector | |
num_vec | number of vectors in matrix |
bool shogun::read_real_valued_sparse | ( | SGSparseVector< float64_t > *& | matrix, | |
int32_t & | num_feat, | |||
int32_t & | num_vec | |||
) |
read sparse real valued features in svm light format e.g. -1 1:10.0 2:100.2 1000:1.3 with -1 == (optional) label and dim 1 - value 10.0 dim 2 - value 100.2 dim 1000 - value 1.3
matrix | matrix to read into | |
num_feat | number of features for each vector | |
num_vec | number of vectors in matrix |
float32_t sd_offset_add | ( | float32_t * | weights, | |
vw_size_t | mask, | |||
VwFeature * | begin, | |||
VwFeature * | end, | |||
vw_size_t | offset | |||
) |
Dot product of feature vector with the weight vector with an offset added to the feature indices.
weights | weight vector | |
mask | mask | |
begin | first feature of the vector | |
end | last feature of the vector | |
offset | index offset |
float32_t sd_offset_truncadd | ( | float32_t * | weights, | |
vw_size_t | mask, | |||
VwFeature * | begin, | |||
VwFeature * | end, | |||
vw_size_t | offset, | |||
float32_t | gravity | |||
) |
Dot product of feature vector with the weight vector with an offset added to the feature indices.
Weights are taken as the truncated weights.
weights | weights | |
mask | mask | |
begin | first feature of the vector | |
end | last feature of the vector | |
offset | index offset | |
gravity | weight threshold value |
void set_global_io | ( | SGIO * | io | ) |
set the global io object
io | io object to use |
void set_global_math | ( | CMath * | math | ) |
set the global math object
math | math object to use |
void set_global_parallel | ( | Parallel * | parallel | ) |
set the global parallel object
parallel | parallel object to use |
void set_global_version | ( | Version * | version | ) |
set the global version object
version | version object to use |
void shogun::sg_global_print_default | ( | FILE * | target, | |
const char * | str | |||
) |
bool shogun::solve_reduced | ( | int32_t | n, | |
int32_t | m, | |||
float64_t | h_x[], | |||
float64_t | h_y[], | |||
float64_t | a[], | |||
float64_t | x_x[], | |||
float64_t | x_y[], | |||
float64_t | c_x[], | |||
float64_t | c_y[], | |||
float64_t | workspace[], | |||
int32_t | step | |||
) |
Definition at line 207 of file pr_loqo.cpp.
void* shogun::sqdist_thread_func | ( | void * | P | ) |
Definition at line 101 of file KMeans.cpp.
uint32_t shogun::ss_length | ( | substring | s | ) |
void shogun::ssl_train | ( | struct data * | Data, | |
struct options * | Options, | |||
struct vector_double * | Weights, | |||
struct vector_double * | Outputs | |||
) |
ocas_return_value_T shogun::svm_ocas_solver | ( | float64_t | C, | |
uint32_t | nData, | |||
float64_t | TolRel, | |||
float64_t | TolAbs, | |||
float64_t | QPBound, | |||
float64_t | MaxTime, | |||
uint32_t | _BufSize, | |||
uint8_t | Method, | |||
void(*)(float64_t *, float64_t *, float64_t *, uint32_t, void *) | compute_W, | |||
float64_t(*)(float64_t, void *) | update_W, | |||
int(*)(float64_t *, uint32_t *, uint32_t, uint32_t, void *) | add_new_cut, | |||
int(*)(float64_t *, void *) | compute_output, | |||
int(*)(float64_t *, float64_t *, uint32_t) | sort, | |||
void(*)(ocas_return_value_T) | ocas_print, | |||
void * | user_data | |||
) |
Definition at line 58 of file libocas.cpp.
ocas_return_value_T shogun::svm_ocas_solver_difC | ( | float64_t * | C, | |
uint32_t | nData, | |||
float64_t | TolRel, | |||
float64_t | TolAbs, | |||
float64_t | QPBound, | |||
float64_t | MaxTime, | |||
uint32_t | _BufSize, | |||
uint8_t | Method, | |||
void(*)(float64_t *, float64_t *, float64_t *, uint32_t, void *) | compute_W, | |||
float64_t(*)(float64_t, void *) | update_W, | |||
int(*)(float64_t *, uint32_t *, uint32_t, uint32_t, void *) | add_new_cut, | |||
int(*)(float64_t *, void *) | compute_output, | |||
int(*)(float64_t *, float64_t *, uint32_t) | sort, | |||
void(*)(ocas_return_value_T) | ocas_print, | |||
void * | user_data | |||
) |
Definition at line 485 of file libocas.cpp.
int32_t shogun::TSVM_MFN | ( | const struct data * | Data, | |
struct options * | Options, | |||
struct vector_double * | Weights, | |||
struct vector_double * | Outputs | |||
) |
uint32_t shogun::ulong_of_substring | ( | substring | s | ) |
void shogun::wrap_dgeqrf | ( | int | m, | |
int | n, | |||
double * | a, | |||
int | lda, | |||
double * | tau, | |||
int * | info | |||
) |
Definition at line 268 of file lapack.cpp.
void shogun::wrap_dgesvd | ( | char | jobu, | |
char | jobvt, | |||
int | m, | |||
int | n, | |||
double * | a, | |||
int | lda, | |||
double * | sing, | |||
double * | u, | |||
int | ldu, | |||
double * | vt, | |||
int | ldvt, | |||
int * | info | |||
) |
Definition at line 249 of file lapack.cpp.
void shogun::wrap_dorgqr | ( | int | m, | |
int | n, | |||
int | k, | |||
double * | a, | |||
int | lda, | |||
double * | tau, | |||
int * | info | |||
) |
Definition at line 286 of file lapack.cpp.
void shogun::wrap_dsyev | ( | char | jobz, | |
char | uplo, | |||
int | n, | |||
double * | a, | |||
int | lda, | |||
double * | w, | |||
int * | info | |||
) |
Definition at line 231 of file lapack.cpp.
void shogun::wrap_dsyevr | ( | char | jobz, | |
char | uplo, | |||
int | n, | |||
double * | a, | |||
int | lda, | |||
int | il, | |||
int | iu, | |||
double * | eigenvalues, | |||
double * | eigenvectors, | |||
int * | info | |||
) |
Definition at line 304 of file lapack.cpp.
void shogun::wrap_dsygvx | ( | int | itype, | |
char | jobz, | |||
char | uplo, | |||
int | n, | |||
double * | a, | |||
int | lda, | |||
double * | b, | |||
int | ldb, | |||
int | il, | |||
int | iu, | |||
double * | eigenvalues, | |||
double * | eigenvectors, | |||
int * | info | |||
) |
Definition at line 340 of file lapack.cpp.
bool shogun::write_char_valued_strings | ( | const SGString< char > * | strings, | |
int32_t | num_str | |||
) |
write char string features, simple ascii format
strings | strings to write | |
num_str | number of strings |
bool shogun::write_real_valued_dense | ( | const float64_t * | matrix, | |
int32_t | num_feat, | |||
int32_t | num_vec | |||
) |
write dense real valued features, simple ascii format
matrix | matrix to write | |
num_feat | number of features for each vector | |
num_vec | number of vectros in matrix |
bool shogun::write_real_valued_sparse | ( | const SGSparseVector< float64_t > * | matrix, | |
int32_t | num_feat, | |||
int32_t | num_vec | |||
) |
write sparse real valued features in svm light format
matrix | matrix to write | |
num_feat | number of features for each vector | |
num_vec | number of vectros in matrix |
static void shogun::xextend | ( | larank_kcache_t * | self, | |
int32_t | k, | |||
int32_t | nlen | |||
) | [static] |
Definition at line 201 of file LaRank.cpp.
static void shogun::xminsize | ( | larank_kcache_t * | self, | |
int32_t | n | |||
) | [static] |
Definition at line 164 of file LaRank.cpp.
static void shogun::xpurge | ( | larank_kcache_t * | self | ) | [static] |
Definition at line 109 of file LaRank.cpp.
static float64_t shogun::xquery | ( | larank_kcache_t * | self, | |
int32_t | i, | |||
int32_t | j | |||
) | [static] |
Definition at line 294 of file LaRank.cpp.
static void shogun::xswap | ( | larank_kcache_t * | self, | |
int32_t | i1, | |||
int32_t | i2, | |||
int32_t | r1, | |||
int32_t | r2 | |||
) | [static] |
Definition at line 220 of file LaRank.cpp.
static void shogun::xtruncate | ( | larank_kcache_t * | self, | |
int32_t | k, | |||
int32_t | nlen | |||
) | [static] |
Definition at line 83 of file LaRank.cpp.
uint32_t BufSize [static] |
Definition at line 33 of file libocas.cpp.
const int32_t constant_hash = 11650396 |
Constant used to access the constant feature.
Definition at line 30 of file vw_constants.h.
Definition at line 32 of file libocas.cpp.
const uint32_t hash_base = 97562527 |
Seed for hash.
Definition at line 33 of file vw_constants.h.
const uint32_t QPSolverMaxIter = 10000000 [static] |
Definition at line 30 of file libocas.cpp.
const int32_t quadratic_constant = 27942141 |
Constant used while hashing/accessing quadratic features.
Definition at line 27 of file vw_constants.h.
uint32_t Randnext |
void(* sg_cancel_computations)(bool &delayed, bool &immediately) = NULL |
Parallel * sg_parallel = NULL |
void(* sg_print_error)(FILE *target, const char *str) = NULL |
void(* sg_print_message)(FILE *target, const char *str) = NULL |
void(* sg_print_warning)(FILE *target, const char *str) = NULL |
Version * sg_version = NULL |