45     bool result = CDotKernel::init(l,r);
 
   67     float64_t result = compute_recursive1(avec, bvec, alen);
 
   86     float64_t result = compute_recursive2(avec, bvec, alen);
 
  107     int32_t offs=cardinality+1;
 
  109     ASSERT(DP_len==(len+1)*offs)
 
  111     for (int32_t j=0; j < len+1; j++)
 
  114     for (int32_t k=1; k < d+1; k++)
 
  121         for (int32_t j=k; j < len+1; j++)
 
  122             DP[k*offs+j]=DP[k*offs+j-1]+avec[j-1]*bvec[j-1]*DP[(k-1)*offs+j-1];
 
  142     int32_t d=cardinality;
 
  143     for (int32_t i=0; i < len; i++)
 
  146     for (int32_t k=1; k < d+1; k++)
 
  149         for (int32_t i=0; i < len; i++)
 
  151             vec_pow[i] *= avec[i]*bvec[i];
 
  157     for (int32_t k=1; k < d+1; k++)
 
  160         for (int32_t s=1; s < k+1; s++)
 
  166             sum += sign*KD[k-s]*KS[s];
 
  185                 "not of type CANOVAKernel, but type %d!\n",
 
int32_t cardinality
degree parameter of kernel 
virtual float64_t compute(int32_t idx_a, int32_t idx_b)
ANOVA (ANalysis Of VAriances) kernel. 
float64_t kernel(int32_t idx_a, int32_t idx_b)
float64_t compute_rec2(int32_t idx_a, int32_t idx_b)
Template class DotKernel is the base class for kernels working on DotFeatures. 
virtual bool init(CFeatures *l, CFeatures *r)
virtual bool init_normalizer()
static CANOVAKernel * obtain_from_generic(CKernel *kernel)
CFeatures * rhs
feature vectors to occur on right hand side 
all of classes and functions are contained in the shogun namespace 
virtual EKernelType get_kernel_type()=0
CFeatures * lhs
feature vectors to occur on left hand side 
The class Features is the base class of all feature objects. 
float64_t compute_rec1(int32_t idx_a, int32_t idx_b)