32 #ifndef _CHAIDTree_H__
33 #define _CHAIDTree_H__
114 virtual const char*
get_name()
const {
return "CHAIDTree"; }
303 float64_t adjusted_p_value(
float64_t p_value, int32_t inum_cat, int32_t fnum_cat, int32_t ft,
bool is_missing);
334 int32_t &r, int32_t &c);
406 int32_t m_dependent_vartype;
409 int32_t m_max_tree_depth;
412 int32_t m_min_node_size;
424 int32_t m_num_breakpoints;
CTreeMachineNode< CHAIDTreeNodeData > node_t
Real Labels are real-valued labels.
float64_t get_num_breakpoints() const
virtual CMulticlassLabels * apply_multiclass(CFeatures *data=NULL)
The class Labels models labels, i.e. class assignments of objects.
void set_max_tree_depth(int32_t d)
virtual bool train_machine(CFeatures *data=NULL)
This class implements the CHAID algorithm proposed by Kass (1980) for decision tree learning...
int32_t get_dependent_vartype() const
void set_dependent_vartype(int32_t var)
Multiclass Labels for multi-class classification.
void set_num_breakpoints(int32_t b)
virtual EProblemType get_machine_problem_type() const
int32_t get_min_node_size() const
SGVector< int32_t > get_feature_types() const
void set_alpha_merge(float64_t a)
virtual bool is_label_valid(CLabels *lab) const
void clear_feature_types()
all of classes and functions are contained in the shogun namespace
The class Features is the base class of all feature objects.
void set_alpha_split(float64_t a)
float64_t get_alpha_split() const
void set_feature_types(SGVector< int32_t > ft)
SGVector< float64_t > get_weights() const
int32_t get_specified_max_tree_depth() const
static const float64_t MISSING
class TreeMachine, a base class for tree based multiclass classifiers. This class is derived from CBa...
virtual CRegressionLabels * apply_regression(CFeatures *data=NULL)
float64_t get_alpha_merge() const
void set_weights(SGVector< float64_t > w)
virtual const char * get_name() const
void set_min_node_size(int32_t size)