12 #include <shogun/lib/external/gpdt.h> 
   13 #include <shogun/lib/external/gpdtsolve.h> 
   25 : 
CSVM(C, k, lab), model(NULL)
 
   45             SG_ERROR(
"Number of training vectors does not match number of labels\n")
 
   53     SG_INFO(
"%d trainlabels\n", prob.ell)
 
   59     prob.preprocess_size = -1;
 
   60     prob.projection_projector = -1;
 
   65     if (prob.chunk_size < 2)      prob.chunk_size = 2;
 
   66     if (prob.q <= 0)              prob.q = prob.chunk_size / 3;
 
   67     if (prob.q < 2)               prob.q = 2;
 
   68     if (prob.q > prob.chunk_size) prob.q = prob.chunk_size;
 
   69     prob.q = prob.q & (~1);
 
   74     SG_INFO(
"\nTRAINING PARAMETERS:\n")
 
   75     SG_INFO(
"\tNumber of training documents: %d\n", prob.ell)
 
   76     SG_INFO(
"\tq: %d\n", prob.chunk_size)
 
   78     SG_INFO(
"\tC: %lf\n", prob.c_const)
 
   79     SG_INFO(
"\tkernel type: %d\n", prob.ker_type)
 
   80     SG_INFO(
"\tcache size: %dMb\n", prob.maxmw)
 
   81     SG_INFO(
"\tStopping tolerance: %lf\n", prob.delta)
 
   84     if (prob.preprocess_size == -1)
 
   85         prob.preprocess_size = (int32_t) ( (
float64_t)prob.chunk_size * 1.5 );
 
   87     if (prob.projection_projector == -1)
 
   89         if (prob.chunk_size <= 20) prob.projection_projector = 0;
 
   90         else prob.projection_projector = 1;
 
   94     solution = SG_MALLOC(
float64_t, prob.ell);
 
   95     prob.gpdtsolve(solution);
 
  105     for (i = 0; i < prob.ell; i++)
 
  107         if (solution[i] > prob.DELTAsv)
 
  110             if (solution[i] > (prob.c_const - prob.DELTAsv)) bsv++;
 
  117     SG_INFO(
"SV: %d BSV = %d\n", num_sv, bsv)
 
  119     for (i = 0; i < prob.ell; i++)
 
  121         if (solution[i] > prob.DELTAsv)
 
virtual bool init(CFeatures *lhs, CFeatures *rhs)
virtual ELabelType get_label_type() const =0
The class Labels models labels, i.e. class assignments of objects. 
virtual int32_t get_num_labels() const =0
virtual int32_t get_num_vectors() const =0
virtual bool train_machine(CFeatures *data=NULL)
void set_bias(float64_t bias)
bool set_alpha(int32_t idx, float64_t val)
void set_objective(float64_t v)
bool set_support_vector(int32_t idx, int32_t val)
all of classes and functions are contained in the shogun namespace 
bool get_linadd_enabled()
The class Features is the base class of all feature objects. 
A generic Support Vector Machine Interface. 
Binary Labels for binary classification. 
bool create_new_model(int32_t num)