36 void CLinearRidgeRegression::init()
55 SG_ERROR(
"Number of training vectors does not match number of labels\n")
58 SG_ERROR(
"Expected Dense Features\n")
75 for (int32_t i=0; i<num_feat; i++)
78 for (int32_t i=0; i<num_vec; i++)
83 cblas_dger(CblasColMajor, num_feat,num_feat, 1.0, v.
vector,1,
91 clapack_dposv(CblasRowMajor,CblasUpper, num_feat, 1, kernel_matrix.
matrix, num_feat,
Real Labels are real-valued labels.
ST * get_feature_vector(int32_t num, int32_t &len, bool &dofree)
int32_t get_num_features() const
virtual void set_w(const SGVector< float64_t > src_w)
The class Labels models labels, i.e. class assignments of objects.
virtual int32_t get_num_labels() const =0
virtual int32_t get_num_vectors() const =0
virtual int32_t get_num_vectors() const
virtual bool save(FILE *dstfile)
virtual void set_features(CDotFeatures *feat)
virtual EFeatureClass get_feature_class() const =0
Class LinearMachine is a generic interface for all kinds of linear machines like classifiers.
all of classes and functions are contained in the shogun namespace
void free_feature_vector(ST *feat_vec, int32_t num, bool dofree)
The class Features is the base class of all feature objects.
virtual bool load(FILE *srcfile)
virtual bool train_machine(CFeatures *data=NULL)
virtual void set_labels(CLabels *lab)
virtual EFeatureType get_feature_type() const =0