14 #ifndef MKLMulticlass_H_
15 #define MKLMulticlass_H_
127 numberofsilpiterations);
167 virtual const char*
get_name()
const {
return "MKLMulticlass"; }
std::vector< float64_t > oldnormweightssquared
virtual ~CMKLMulticlass()
double norm(double *v, double p, int n)
MKLMulticlass is a class for L1-norm Multiclass MKL.
The class Labels models labels, i.e. class assignments of objects.
void addingweightsstep(const std::vector< float64_t > &curweights)
virtual void set_mkl_norm(float64_t norm)
CMKLMulticlass operator=(const CMKLMulticlass &cm)
virtual bool evaluatefinishcriterion(const int32_t numberofsilpiterations)
float64_t getsquarenormofprimalcoefficients(const int32_t ind)
::std::vector< std::vector< float64_t > > weightshistory
float64_t getsumofsignfreealphas()
MKLMulticlassOptimizationBase is a helper class for MKLMulticlass.
float64_t * getsubkernelweights(int32_t &numweights)
MKLMulticlassOptimizationBase * lpw
all of classes and functions are contained in the shogun namespace
Class GMNPSVM implements a one vs. rest MultiClass SVM.
The class Features is the base class of all feature objects.
std::vector< float64_t > normweightssquared
void set_mkl_epsilon(float64_t eps)
virtual bool train_machine(CFeatures *data=NULL)
virtual const char * get_name() const
virtual EMachineType get_classifier_type()
void set_max_num_mkliters(int32_t maxnum)
int32_t max_num_mkl_iters