22 #include <ilcplex/cplex.h>
260 virtual const char*
get_name()
const {
return "MKL"; }
294 int32_t* label, int32_t* active2dnum,
347 for (int32_t i=0;i <len;i++)
348 beta[i]=beta[i]/(1.0-lmd+lmd*beta[i]);
Class Time that implements a stopwatch based on either cpu time or wall clock time.
float64_t get_mkl_epsilon()
void set_mkl_block_norm(float64_t q)
double norm(double *v, double p, int n)
bool check_glp_status(glp_prob *lp)
float64_t compute_svm_primal_objective()
virtual void init_training()=0
void elasticnet_transform(float64_t *beta, float64_t lmd, int32_t len)
float64_t compute_optimal_betas_block_norm(float64_t *beta, const float64_t *old_beta, const int32_t num_kernels, const float64_t *sumw, const float64_t suma, const float64_t mkl_objective)
bool get_interleaved_optimization_enabled()
virtual void compute_sum_beta(float64_t *sumw)
float64_t compute_optimal_betas_directly(float64_t *beta, const float64_t *old_beta, const int32_t num_kernels, const float64_t *sumw, const float64_t suma, const float64_t mkl_objective)
void set_mkl_norm(float64_t norm)
int32_t get_mkl_iterations()
float64_t compute_elasticnet_dual_objective()
virtual bool perform_mkl_step(const float64_t *sumw, float64_t suma)
virtual float64_t compute_mkl_dual_objective()
void set_mkl_epsilon(float64_t eps)
void set_interleaved_optimization_enabled(bool enable)
CTime training_time_clock
float64_t compute_optimal_betas_newton(float64_t *beta, const float64_t *old_beta, int32_t num_kernels, const float64_t *sumw, float64_t suma, float64_t mkl_objective)
void set_constraint_generator(CSVM *s)
void elasticnet_dual(float64_t *ff, float64_t *gg, float64_t *hh, const float64_t &del, const float64_t *nm, int32_t len, const float64_t &lambda)
Multiple Kernel Learning.
void set_qnorm_constraints(float64_t *beta, int32_t num_kernels)
bool interleaved_optimization
float64_t compute_optimal_betas_elasticnet(float64_t *beta, const float64_t *old_beta, const int32_t num_kernels, const float64_t *sumw, const float64_t suma, const float64_t mkl_objective)
float64_t compute_optimal_betas_via_cplex(float64_t *beta, const float64_t *old_beta, int32_t num_kernels, const float64_t *sumw, float64_t suma, int32_t &inner_iters)
all of classes and functions are contained in the shogun namespace
virtual float64_t compute_sum_alpha()=0
virtual bool train_machine(CFeatures *data=NULL)
virtual const char * get_name() const
The class Features is the base class of all feature objects.
A generic Support Vector Machine Interface.
void set_elasticnet_lambda(float64_t elasticnet_lambda)
float64_t compute_mkl_primal_objective()
static bool perform_mkl_step_helper(CMKL *mkl, const float64_t *sumw, const float64_t suma)
void set_C_mkl(float64_t C)
float64_t compute_optimal_betas_via_glpk(float64_t *beta, const float64_t *old_beta, int num_kernels, const float64_t *sumw, float64_t suma, int32_t &inner_iters)