23 : 
CMachine(), m_pos_pseudo(1e-10), m_neg_pseudo(1e-10),
 
   24     pos_model(NULL), neg_model(NULL), features(NULL)
 
   27             "pos_pseudo",
"pseudo count for positive class");
 
   29             "neg_pseudo", 
"pseudo count for negative class");
 
   32             "pos_model", 
"LinearHMM modelling positive class.");
 
   34             "neg_model", 
"LinearHMM modelling negative class.");
 
   37             "features", 
"String Features.");
 
   57             SG_ERROR(
"Features not of class string type word\n")
 
   84             pos_indizes[pos_idx++]=i;
 
   86             neg_indizes[neg_idx++]=i;
 
  106             SG_ERROR(
"Features not of class string type word\n")
 
SGVector< ST > get_feature_vector(int32_t num)
virtual ~CPluginEstimate()
virtual ELabelType get_label_type() const =0
float64_t apply_one(int32_t vec_idx)
classify the test feature vector indexed by vec_idx 
virtual int32_t get_num_labels() const =0
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
virtual int32_t get_num_vectors() const 
void free_feature_vector(ST *feat_vec, int32_t num, bool dofree)
A generic learning machine interface. 
float64_t get_log_likelihood_example(uint16_t *vector, int32_t len)
void add(bool *param, const char *name, const char *description="")
Class SGObject is the base class of all shogun objects. 
virtual void set_features(CStringFeatures< uint16_t > *feat)
CPluginEstimate(float64_t pos_pseudo=1e-10, float64_t neg_pseudo=1e-10)
virtual EFeatureClass get_feature_class() const =0
all of classes and functions are contained in the shogun namespace 
The class Features is the base class of all feature objects. 
virtual bool train_machine(CFeatures *data=NULL)
virtual bool train(CFeatures *data=NULL)
CStringFeatures< uint16_t > * features
Binary Labels for binary classification. 
The class LinearHMM is for learning Higher Order Markov chains. 
virtual EFeatureType get_feature_type() const =0