136 CRBM(int32_t num_hidden);
144 CRBM(int32_t num_hidden, int32_t num_visible,
185 virtual void sample(int32_t num_gibbs_steps=1, int32_t batch_size=1);
200 int32_t num_gibbs_steps=1, int32_t batch_size=1);
213 int32_t num_gibbs_steps=1);
230 int32_t num_gibbs_steps=1);
274 bool positive_phase =
true,
347 virtual const char*
get_name()
const {
return "RBM"; }
A Restricted Boltzmann Machine.
virtual float64_t reconstruction_error(SGMatrix< float64_t > visible, SGMatrix< float64_t > buffer=SGMatrix< float64_t >())
virtual int32_t get_num_parameters()
virtual CDenseFeatures< float64_t > * sample_group(int32_t V, int32_t num_gibbs_steps=1, int32_t batch_size=1)
virtual void add_visible_group(int32_t num_units, ERBMVisibleUnitType unit_type)
SGVector< float64_t > m_params
float64_t gd_learning_rate
virtual const char * get_name() const
ERBMMonitoringMethod monitoring_method
virtual void mean_visible(SGMatrix< float64_t > hidden, SGMatrix< float64_t > result)
virtual void contrastive_divergence(SGMatrix< float64_t > visible_batch, SGVector< float64_t > gradients)
virtual CDenseFeatures< float64_t > * visible_state_features()
virtual SGMatrix< float64_t > get_weights(SGVector< float64_t > p=SGVector< float64_t >())
Class SGObject is the base class of all shogun objects.
virtual SGVector< float64_t > get_hidden_bias(SGVector< float64_t > p=SGVector< float64_t >())
virtual void initialize_neural_network(float64_t sigma=0.01)
virtual void train(CDenseFeatures< float64_t > *features)
virtual SGVector< float64_t > get_visible_bias(SGVector< float64_t > p=SGVector< float64_t >())
SGMatrix< float64_t > hidden_state
int32_t monitoring_interval
virtual void reset_chain()
CDynamicArray< int32_t > * m_visible_group_types
int32_t m_num_visible_groups
CDynamicArray< int32_t > * m_visible_group_sizes
all of classes and functions are contained in the shogun namespace
virtual void sample_visible(SGMatrix< float64_t > mean, SGMatrix< float64_t > result)
virtual void set_batch_size(int32_t batch_size)
virtual void sample_with_evidence(int32_t E, CDenseFeatures< float64_t > *evidence, int32_t num_gibbs_steps=1)
float64_t gd_learning_rate_decay
virtual SGVector< float64_t > get_parameters()
int32_t gd_mini_batch_size
SGMatrix< float64_t > visible_state
virtual float64_t pseudo_likelihood(SGMatrix< float64_t > visible, SGMatrix< float64_t > buffer=SGMatrix< float64_t >())
virtual void sample_hidden(SGMatrix< float64_t > mean, SGMatrix< float64_t > result)
CDynamicArray< int32_t > * m_visible_state_offsets
virtual void mean_hidden(SGMatrix< float64_t > visible, SGMatrix< float64_t > result)
virtual float64_t free_energy(SGMatrix< float64_t > visible, SGMatrix< float64_t > buffer=SGMatrix< float64_t >())
virtual void sample(int32_t num_gibbs_steps=1, int32_t batch_size=1)
virtual void free_energy_gradients(SGMatrix< float64_t > visible, SGVector< float64_t > gradients, bool positive_phase=true, SGMatrix< float64_t > hidden_mean_given_visible=SGMatrix< float64_t >())
virtual CDenseFeatures< float64_t > * sample_group_with_evidence(int32_t V, int32_t E, CDenseFeatures< float64_t > *evidence, int32_t num_gibbs_steps=1)