SHOGUN  4.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
List of all members | Public Types | Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes
CC45ClassifierTree Class Reference

Detailed Description

Class C45ClassifierTree implements the C4.5 algorithm for decision tree learning. The algorithm steps are briefy explained below :
.

function C4.5 (R: a set of non-categorical attributes, C: the categorical attribute, S: a training set):
returns a decision tree;
begin
If S consists of records all with the same value for the categorical attribute,
return a single node with that value;
If R is empty,
return a single node with as value the most frequent
of the values of the categorical attribute in C;
[note that then there will be errors, that is, records that will be improperly classified];
For each non-categorical attribute NC in R :
If NC is continuous then first convert it to nominal attribute by separating into 2 classes about a threshold
Find Gain of all attributes
Let D be the attribute with largest Gain(D,S) among attributes in R;
Let \({d_j| j=1,2, .., m}\) be the values of attribute D;
Let \({S_j| j=1,2, .., m}\) be the subsets of S consisting respectively of records with value \(d_j\) for attribute D;
Return a tree with root labeled D and arcs labeled \(d_1, d_2, .., d_m\) going respectively to the trees
C4.5(R-{D}, C, \(S_1\)), .., C4.5(R-{D}, C, \(S_m\));
end C4.5;

cf. http://tesis-algoritmo-c45.googlecode.com/files/C45.ppt

Definition at line 75 of file C45ClassifierTree.h.

Inheritance diagram for CC45ClassifierTree:
Inheritance graph
[legend]

Public Types

typedef CTreeMachineNode
< C45TreeNodeData
node_t
 
typedef CBinaryTreeMachineNode
< C45TreeNodeData
bnode_t
 

Public Member Functions

 CC45ClassifierTree ()
 
virtual ~CC45ClassifierTree ()
 
virtual const char * get_name () const
 
virtual CMulticlassLabelsapply_multiclass (CFeatures *data=NULL)
 
void prune_tree (CDenseFeatures< float64_t > *validation_data, CMulticlassLabels *validation_labels, float64_t epsilon=0.f)
 
SGVector< float64_tget_certainty_vector () const
 
void set_weights (SGVector< float64_t > w)
 
SGVector< float64_tget_weights () const
 
void clear_weights ()
 
void set_feature_types (SGVector< bool > ft)
 
SGVector< bool > get_feature_types () const
 
void clear_feature_types ()
 
void set_root (CTreeMachineNode< C45TreeNodeData > *root)
 
CTreeMachineNode
< C45TreeNodeData > * 
get_root ()
 
CTreeMachineclone_tree ()
 
int32_t get_num_machines () const
 
virtual EProblemType get_machine_problem_type () const
 
virtual bool is_label_valid (CLabels *lab) const
 
virtual bool train (CFeatures *data=NULL)
 
virtual CLabelsapply (CFeatures *data=NULL)
 
virtual CBinaryLabelsapply_binary (CFeatures *data=NULL)
 
virtual CRegressionLabelsapply_regression (CFeatures *data=NULL)
 
virtual CStructuredLabelsapply_structured (CFeatures *data=NULL)
 
virtual CLatentLabelsapply_latent (CFeatures *data=NULL)
 
virtual void set_labels (CLabels *lab)
 
virtual CLabelsget_labels ()
 
void set_max_train_time (float64_t t)
 
float64_t get_max_train_time ()
 
virtual EMachineType get_classifier_type ()
 
void set_solver_type (ESolverType st)
 
ESolverType get_solver_type ()
 
virtual void set_store_model_features (bool store_model)
 
virtual bool train_locked (SGVector< index_t > indices)
 
virtual float64_t apply_one (int32_t i)
 
virtual CLabelsapply_locked (SGVector< index_t > indices)
 
virtual CBinaryLabelsapply_locked_binary (SGVector< index_t > indices)
 
virtual CRegressionLabelsapply_locked_regression (SGVector< index_t > indices)
 
virtual CMulticlassLabelsapply_locked_multiclass (SGVector< index_t > indices)
 
virtual CStructuredLabelsapply_locked_structured (SGVector< index_t > indices)
 
virtual CLatentLabelsapply_locked_latent (SGVector< index_t > indices)
 
virtual void data_lock (CLabels *labs, CFeatures *features)
 
virtual void post_lock (CLabels *labs, CFeatures *features)
 
virtual void data_unlock ()
 
virtual bool supports_locking () const
 
bool is_data_locked () const
 
virtual CSGObjectshallow_copy () const
 
virtual CSGObjectdeep_copy () const
 
virtual bool is_generic (EPrimitiveType *generic) const
 
template<class T >
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
void unset_generic ()
 
virtual void print_serializable (const char *prefix="")
 
virtual bool save_serializable (CSerializableFile *file, const char *prefix="")
 
virtual bool load_serializable (CSerializableFile *file, const char *prefix="")
 
void set_global_io (SGIO *io)
 
SGIOget_global_io ()
 
void set_global_parallel (Parallel *parallel)
 
Parallelget_global_parallel ()
 
void set_global_version (Version *version)
 
Versionget_global_version ()
 
SGStringList< char > get_modelsel_names ()
 
void print_modsel_params ()
 
char * get_modsel_param_descr (const char *param_name)
 
index_t get_modsel_param_index (const char *param_name)
 
void build_gradient_parameter_dictionary (CMap< TParameter *, CSGObject * > *dict)
 
virtual void update_parameter_hash ()
 
virtual bool parameter_hash_changed ()
 
virtual bool equals (CSGObject *other, float64_t accuracy=0.0, bool tolerant=false)
 
virtual CSGObjectclone ()
 

Public Attributes

SGIOio
 
Parallelparallel
 
Versionversion
 
Parameterm_parameters
 
Parameterm_model_selection_parameters
 
Parameterm_gradient_parameters
 
uint32_t m_hash
 

Static Public Attributes

static const float64_t MISSING =CMath::NOT_A_NUMBER
 

Protected Member Functions

virtual bool train_machine (CFeatures *data=NULL)
 
virtual void store_model_features ()
 
virtual bool train_require_labels () const
 
virtual void load_serializable_pre () throw (ShogunException)
 
virtual void load_serializable_post () throw (ShogunException)
 
virtual void save_serializable_pre () throw (ShogunException)
 
virtual void save_serializable_post () throw (ShogunException)
 

Protected Attributes

CTreeMachineNode
< C45TreeNodeData > * 
m_root
 
CDynamicObjectArraym_machines
 
float64_t m_max_train_time
 
CLabelsm_labels
 
ESolverType m_solver_type
 
bool m_store_model_features
 
bool m_data_locked
 

Member Typedef Documentation

bnode_t type- Tree node with max 2 possible children

Definition at line 55 of file TreeMachine.h.

node_t type- Tree node with many possible children

Definition at line 52 of file TreeMachine.h.

Constructor & Destructor Documentation

constructor

Definition at line 40 of file C45ClassifierTree.cpp.

~CC45ClassifierTree ( )
virtual

destructor

Definition at line 46 of file C45ClassifierTree.cpp.

Member Function Documentation

CLabels * apply ( CFeatures data = NULL)
virtualinherited

apply machine to data if data is not specified apply to the current features

Parameters
data(test)data to be classified
Returns
classified labels

Definition at line 152 of file Machine.cpp.

CBinaryLabels * apply_binary ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of binary classification problem

Reimplemented in CKernelMachine, COnlineLinearMachine, CWDSVMOcas, CNeuralNetwork, CLinearMachine, CGaussianProcessClassification, CDomainAdaptationSVMLinear, CDomainAdaptationSVM, CPluginEstimate, and CBaggingMachine.

Definition at line 208 of file Machine.cpp.

CLatentLabels * apply_latent ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of latent problem

Reimplemented in CLinearLatentMachine.

Definition at line 232 of file Machine.cpp.

CLabels * apply_locked ( SGVector< index_t indices)
virtualinherited

Applies a locked machine on a set of indices. Error if machine is not locked

Parameters
indicesindex vector (of locked features) that is predicted

Definition at line 187 of file Machine.cpp.

CBinaryLabels * apply_locked_binary ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for binary problems

Reimplemented in CKernelMachine, and CMultitaskLinearMachine.

Definition at line 238 of file Machine.cpp.

CLatentLabels * apply_locked_latent ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for latent problems

Definition at line 266 of file Machine.cpp.

CMulticlassLabels * apply_locked_multiclass ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for multiclass problems

Definition at line 252 of file Machine.cpp.

CRegressionLabels * apply_locked_regression ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for regression problems

Reimplemented in CKernelMachine.

Definition at line 245 of file Machine.cpp.

CStructuredLabels * apply_locked_structured ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for structured problems

Definition at line 259 of file Machine.cpp.

CMulticlassLabels * apply_multiclass ( CFeatures data = NULL)
virtual

classify data using C4.5 Tree

Parameters
datadata to be classified
Returns
MulticlassLabels corresponding to labels of various test vectors

Reimplemented from CMachine.

Definition at line 50 of file C45ClassifierTree.cpp.

virtual float64_t apply_one ( int32_t  i)
virtualinherited
CRegressionLabels * apply_regression ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of regression problem

Reimplemented in CKernelMachine, CWDSVMOcas, COnlineLinearMachine, CNeuralNetwork, CCHAIDTree, CStochasticGBMachine, CCARTree, CLinearMachine, CGaussianProcessRegression, and CBaggingMachine.

Definition at line 214 of file Machine.cpp.

CStructuredLabels * apply_structured ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of SO classification problem

Reimplemented in CLinearStructuredOutputMachine.

Definition at line 226 of file Machine.cpp.

void build_gradient_parameter_dictionary ( CMap< TParameter *, CSGObject * > *  dict)
inherited

Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.

Parameters
dictdictionary of parameters to be built.

Definition at line 597 of file SGObject.cpp.

void clear_feature_types ( )

clear feature types of various features

Definition at line 103 of file C45ClassifierTree.cpp.

void clear_weights ( )

clear weights of data points

Definition at line 86 of file C45ClassifierTree.cpp.

CSGObject * clone ( )
virtualinherited

Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.

Returns
an identical copy of the given object, which is disjoint in memory. NULL if the clone fails. Note that the returned object is SG_REF'ed

Definition at line 714 of file SGObject.cpp.

CTreeMachine* clone_tree ( )
inherited

clone tree

Returns
clone of entire tree

Definition at line 97 of file TreeMachine.h.

void data_lock ( CLabels labs,
CFeatures features 
)
virtualinherited

Locks the machine on given labels and data. After this call, only train_locked and apply_locked may be called

Only possible if supports_locking() returns true

Parameters
labslabels used for locking
featuresfeatures used for locking

Reimplemented in CKernelMachine.

Definition at line 112 of file Machine.cpp.

void data_unlock ( )
virtualinherited

Unlocks a locked machine and restores previous state

Reimplemented in CKernelMachine.

Definition at line 143 of file Machine.cpp.

CSGObject * deep_copy ( ) const
virtualinherited

A deep copy. All the instance variables will also be copied.

Definition at line 198 of file SGObject.cpp.

bool equals ( CSGObject other,
float64_t  accuracy = 0.0,
bool  tolerant = false 
)
virtualinherited

Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!

May be overwritten but please do with care! Should not be necessary in most cases.

Parameters
otherobject to compare with
accuracyaccuracy to use for comparison (optional)
tolerantallows linient check on float equality (within accuracy)
Returns
true if all parameters were equal, false if not

Definition at line 618 of file SGObject.cpp.

SGVector< float64_t > get_certainty_vector ( ) const

certainty of classification done by apply_multiclass. For each data point reaching a leaf node, it computes the ratio of weight of training data with same predicted label that reached that leaf node over the total weight of all training data points that reached the same leaf node

Returns
Vector of certainty values associated with data classified in apply_multiclass

Definition at line 70 of file C45ClassifierTree.cpp.

EMachineType get_classifier_type ( )
virtualinherited
SGVector< bool > get_feature_types ( ) const

set feature types of various features

Returns
bool vector - true for nominal feature false for continuous feature type

Definition at line 98 of file C45ClassifierTree.cpp.

SGIO * get_global_io ( )
inherited

get the io object

Returns
io object

Definition at line 235 of file SGObject.cpp.

Parallel * get_global_parallel ( )
inherited

get the parallel object

Returns
parallel object

Definition at line 277 of file SGObject.cpp.

Version * get_global_version ( )
inherited

get the version object

Returns
version object

Definition at line 290 of file SGObject.cpp.

CLabels * get_labels ( )
virtualinherited

get labels

Returns
labels

Definition at line 76 of file Machine.cpp.

EProblemType get_machine_problem_type ( ) const
virtualinherited

get problem type

Reimplemented from CMachine.

Reimplemented in CCHAIDTree, and CCARTree.

Definition at line 32 of file BaseMulticlassMachine.cpp.

float64_t get_max_train_time ( )
inherited

get maximum training time

Returns
maximum training time

Definition at line 87 of file Machine.cpp.

SGStringList< char > get_modelsel_names ( )
inherited
Returns
vector of names of all parameters which are registered for model selection

Definition at line 498 of file SGObject.cpp.

char * get_modsel_param_descr ( const char *  param_name)
inherited

Returns description of a given parameter string, if it exists. SG_ERROR otherwise

Parameters
param_namename of the parameter
Returns
description of the parameter

Definition at line 522 of file SGObject.cpp.

index_t get_modsel_param_index ( const char *  param_name)
inherited

Returns index of model selection parameter with provided index

Parameters
param_namename of model selection parameter
Returns
index of model selection parameter with provided name, -1 if there is no such

Definition at line 535 of file SGObject.cpp.

virtual const char* get_name ( ) const
virtual

get name

Returns
class name C45ClassifierTree

Reimplemented from CTreeMachine< C45TreeNodeData >.

Definition at line 87 of file C45ClassifierTree.h.

int32_t get_num_machines ( ) const
inherited

get number of machines

Returns
number of machines

Definition at line 27 of file BaseMulticlassMachine.cpp.

CTreeMachineNode<C45TreeNodeData >* get_root ( )
inherited

get root

Returns
root the root node of the tree

Definition at line 88 of file TreeMachine.h.

ESolverType get_solver_type ( )
inherited

get solver type

Returns
solver

Definition at line 102 of file Machine.cpp.

SGVector< float64_t > get_weights ( ) const

get weights of data points

Returns
vector of weights

Definition at line 81 of file C45ClassifierTree.cpp.

bool is_data_locked ( ) const
inherited
Returns
whether this machine is locked

Definition at line 296 of file Machine.h.

bool is_generic ( EPrimitiveType *  generic) const
virtualinherited

If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.

Parameters
genericset to the type of the generic if returning TRUE
Returns
TRUE if a class template.

Definition at line 296 of file SGObject.cpp.

bool is_label_valid ( CLabels lab) const
virtualinherited

check whether the labels is valid.

Parameters
labthe labels being checked, guaranteed to be non-NULL

Reimplemented from CMachine.

Reimplemented in CCARTree, and CCHAIDTree.

Definition at line 37 of file BaseMulticlassMachine.cpp.

bool load_serializable ( CSerializableFile file,
const char *  prefix = "" 
)
virtualinherited

Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!

Parameters
filewhere to load from
prefixprefix for members
Returns
TRUE if done, otherwise FALSE

Definition at line 369 of file SGObject.cpp.

void load_serializable_post ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel, CWeightedDegreePositionStringKernel, CList, CAlphabet, CLinearHMM, CGaussianKernel, CInverseMultiQuadricKernel, CCircularKernel, and CExponentialKernel.

Definition at line 426 of file SGObject.cpp.

void load_serializable_pre ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 421 of file SGObject.cpp.

bool parameter_hash_changed ( )
virtualinherited
Returns
whether parameter combination has changed since last update

Definition at line 262 of file SGObject.cpp.

virtual void post_lock ( CLabels labs,
CFeatures features 
)
virtualinherited

post lock

Reimplemented in CMultitaskLinearMachine.

Definition at line 287 of file Machine.h.

void print_modsel_params ( )
inherited

prints all parameter registered for model selection and their type

Definition at line 474 of file SGObject.cpp.

void print_serializable ( const char *  prefix = "")
virtualinherited

prints registered parameters out

Parameters
prefixprefix for members

Definition at line 308 of file SGObject.cpp.

void prune_tree ( CDenseFeatures< float64_t > *  validation_data,
CMulticlassLabels validation_labels,
float64_t  epsilon = 0.f 
)

prune decision tree - uses reduced error pruning algorithm

cf. http://en.wikipedia.org/wiki/Pruning_%28decision_trees%29#Reduced_error_pruning

At each node, starting from leaf nodes up to the root node, this algorithm checks if removing the subtree gives better results (or somewhat comparable results). If so, it replaces the subtree with a leaf node. The algorithm implemented is recursive which starts with the root node. At each node, it prunes its children first and then itself. As the algorithm goes down each level during recursion, it creates the new set of features by pushing subset into subset stack. While retracting, it pops these subsets to access previous state of feature matrix (see add_subset() and remove_subset() in Shogun documentation).

Parameters
validation_datafeature vectors from validation dataset
validation_labelsmulticlass labels from validation dataset
epsilonprune subtree even if there is epsilon loss in accuracy

Definition at line 62 of file C45ClassifierTree.cpp.

bool save_serializable ( CSerializableFile file,
const char *  prefix = "" 
)
virtualinherited

Save this object to file.

Parameters
filewhere to save the object; will be closed during returning if PREFIX is an empty string.
prefixprefix for members
Returns
TRUE if done, otherwise FALSE

Definition at line 314 of file SGObject.cpp.

void save_serializable_post ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel.

Definition at line 436 of file SGObject.cpp.

void save_serializable_pre ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel, CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 431 of file SGObject.cpp.

void set_feature_types ( SGVector< bool >  ft)

set feature types of various features

Parameters
ftbool vector true for nominal feature false for continuous feature type

Definition at line 92 of file C45ClassifierTree.cpp.

void set_generic ( )
inherited

Definition at line 41 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 46 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 51 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 56 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 61 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 66 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 71 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 76 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 81 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 86 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 91 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 96 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 101 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 106 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 111 of file SGObject.cpp.

void set_generic ( )
inherited

set generic type to T

void set_global_io ( SGIO io)
inherited

set the io object

Parameters
ioio object to use

Definition at line 228 of file SGObject.cpp.

void set_global_parallel ( Parallel parallel)
inherited

set the parallel object

Parameters
parallelparallel object to use

Definition at line 241 of file SGObject.cpp.

void set_global_version ( Version version)
inherited

set the version object

Parameters
versionversion object to use

Definition at line 283 of file SGObject.cpp.

void set_labels ( CLabels lab)
virtualinherited

set labels

Parameters
lablabels

Reimplemented in CNeuralNetwork, CGaussianProcessMachine, CCARTree, CStructuredOutputMachine, CRelaxedTree, and CMulticlassMachine.

Definition at line 65 of file Machine.cpp.

void set_max_train_time ( float64_t  t)
inherited

set maximum training time

Parameters
tmaximimum training time

Definition at line 82 of file Machine.cpp.

void set_root ( CTreeMachineNode< C45TreeNodeData > *  root)
inherited

set root

Parameters
rootthe root node of the tree

Definition at line 78 of file TreeMachine.h.

void set_solver_type ( ESolverType  st)
inherited

set solver type

Parameters
stsolver type

Definition at line 97 of file Machine.cpp.

void set_store_model_features ( bool  store_model)
virtualinherited

Setter for store-model-features-after-training flag

Parameters
store_modelwhether model should be stored after training

Definition at line 107 of file Machine.cpp.

void set_weights ( SGVector< float64_t w)

set weights of data points

Parameters
wvector of weights

Definition at line 75 of file C45ClassifierTree.cpp.

CSGObject * shallow_copy ( ) const
virtualinherited

A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.

Reimplemented in CGaussianKernel.

Definition at line 192 of file SGObject.cpp.

virtual void store_model_features ( )
protectedvirtualinherited

enable unlocked cross-validation - no model features to store

Reimplemented from CMachine.

Definition at line 152 of file TreeMachine.h.

virtual bool supports_locking ( ) const
virtualinherited
Returns
whether this machine supports locking

Reimplemented in CKernelMachine, and CMultitaskLinearMachine.

Definition at line 293 of file Machine.h.

bool train ( CFeatures data = NULL)
virtualinherited

train machine

Parameters
datatraining data (parameter can be avoided if distance or kernel-based classifiers are used and distance/kernels are initialized with train data). If flag is set, model features will be stored after training.
Returns
whether training was successful

Reimplemented in CRelaxedTree, CAutoencoder, CSGDQN, and COnlineSVMSGD.

Definition at line 39 of file Machine.cpp.

virtual bool train_locked ( SGVector< index_t indices)
virtualinherited

Trains a locked machine on a set of indices. Error if machine is not locked

NOT IMPLEMENTED

Parameters
indicesindex vector (of locked features) that is used for training
Returns
whether training was successful

Reimplemented in CKernelMachine, and CMultitaskLinearMachine.

Definition at line 239 of file Machine.h.

bool train_machine ( CFeatures data = NULL)
protectedvirtual

train machine - build C4.5 Tree from training data

Parameters
datatraining data

Reimplemented from CMachine.

Definition at line 109 of file C45ClassifierTree.cpp.

virtual bool train_require_labels ( ) const
protectedvirtualinherited

returns whether machine require labels for training

Reimplemented in COnlineLinearMachine, CHierarchical, CLinearLatentMachine, CVwConditionalProbabilityTree, CConditionalProbabilityTree, and CLibSVMOneClass.

Definition at line 354 of file Machine.h.

void unset_generic ( )
inherited

unset generic type

this has to be called in classes specializing a template class

Definition at line 303 of file SGObject.cpp.

void update_parameter_hash ( )
virtualinherited

Updates the hash of current parameter combination

Definition at line 248 of file SGObject.cpp.

Member Data Documentation

SGIO* io
inherited

io

Definition at line 369 of file SGObject.h.

bool m_data_locked
protectedinherited

whether data is locked

Definition at line 370 of file Machine.h.

Parameter* m_gradient_parameters
inherited

parameters wrt which we can compute gradients

Definition at line 384 of file SGObject.h.

uint32_t m_hash
inherited

Hash of parameter values

Definition at line 387 of file SGObject.h.

CLabels* m_labels
protectedinherited

labels

Definition at line 361 of file Machine.h.

CDynamicObjectArray* m_machines
protectedinherited

machines

Definition at line 56 of file BaseMulticlassMachine.h.

float64_t m_max_train_time
protectedinherited

maximum training time

Definition at line 358 of file Machine.h.

Parameter* m_model_selection_parameters
inherited

model selection parameters

Definition at line 381 of file SGObject.h.

Parameter* m_parameters
inherited

parameters

Definition at line 378 of file SGObject.h.

CTreeMachineNode<C45TreeNodeData >* m_root
protectedinherited

tree root

Definition at line 156 of file TreeMachine.h.

ESolverType m_solver_type
protectedinherited

solver type

Definition at line 364 of file Machine.h.

bool m_store_model_features
protectedinherited

whether model features should be stored after training

Definition at line 367 of file Machine.h.

const float64_t MISSING =CMath::NOT_A_NUMBER
static

denotes that a feature in a vector is missing MISSING = NOT_A_NUMBER

Definition at line 213 of file C45ClassifierTree.h.

Parallel* parallel
inherited

parallel

Definition at line 372 of file SGObject.h.

Version* version
inherited

version

Definition at line 375 of file SGObject.h.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation