SHOGUN  4.2.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
Redux.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Soumyajit De
4  * Written (w) 2014 Khaled Nasr
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice, this
11  * list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * The views and conclusions contained in the software and documentation are those
28  * of the authors and should not be interpreted as representing official policies,
29  * either expressed or implied, of the Shogun Development Team.
30  */
31 
32 #ifndef REDUX_H_
33 #define REDUX_H_
34 
41 
42 namespace shogun
43 {
44 
45 namespace linalg
46 {
47 
57 template <Backend backend=linalg_traits<Redux>::backend, class Vector>
58 typename Vector::Scalar dot(Vector a, Vector b)
59 {
61 }
62 
67 template <Backend backend=linalg_traits<Redux>::backend, class Matrix>
68 typename Matrix::Scalar max(Matrix m)
69 {
71 }
72 
80 template <Backend backend=linalg_traits<Redux>::backend, class Vector>
81 typename Vector::Scalar vector_sum(Vector a)
82 {
84 }
85 
86 #ifdef HAVE_LINALG_LIB
87 
95 template <Backend backend=linalg_traits<Redux>::backend, class Matrix>
96 typename Matrix::Scalar sum(Matrix m, bool no_diag=false)
97 {
99 }
100 
109 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
110 typename Matrix::Scalar sum_symmetric(Matrix m, bool no_diag=false)
111 {
113 }
114 
123 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
124 typename Matrix::Scalar sum_symmetric(Block<Matrix> b, bool no_diag=false)
125 {
127  ::compute(b, no_diag);
128 }
129 
138 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
139 typename implementation::colwise_sum<backend,Matrix>::ReturnType colwise_sum(
140  Matrix m, bool no_diag=false)
141 {
143 }
144 
153 template <Backend backend=linalg_traits<Redux>::backend,class Matrix, class Vector>
154 void colwise_sum(Matrix m, Vector result, bool no_diag=false)
155 {
157 }
158 
167 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
168 typename implementation::rowwise_sum<backend,Matrix>::ReturnType rowwise_sum(
169  Matrix m, bool no_diag=false)
170 {
172 }
173 
182 template <Backend backend=linalg_traits<Redux>::backend, class Matrix, class Vector>
183 void rowwise_sum(Matrix m, Vector result, bool no_diag=false)
184 {
186 }
187 
194 template <Backend backend=linalg_traits<Redux>::backend, class Vector>
195 typename implementation::int2float<typename Vector::Scalar>::floatType mean(Vector a)
196 {
198 }
199 
208 template <Backend backend=linalg_traits<Redux>::backend, class Matrix>
209 typename implementation::int2float<typename Matrix::Scalar>::floatType mean(
210  Matrix m, bool no_diag)
211 {
213 }
214 
223 template <Backend backend=linalg_traits<Redux>::backend,class Matrix>
224 SGVector<typename implementation::rowwise_mean<backend,Matrix>::ReturnDataType>
225  rowwise_mean(Matrix m, bool no_diag=false)
226 {
228 }
229 
236 template <Backend backend=linalg_traits<Redux>::backend, class Matrix>
237 typename implementation::cholesky<backend,Matrix>::ReturnType cholesky(Matrix m, bool lower=true)
238 {
240 }
241 
242 #endif // HAVE_LINALG_LIB
243 
244 }
245 
246 }
247 #endif // REDUX_H_
static SGVector< T > compute(Matrix m, bool no_diag)
static ReturnType compute(Matrix a)
static T compute(Matrix m, bool no_diag)
Vector::Scalar dot(Vector a, Vector b)
Definition: Redux.h:58
static ReturnType compute(Matrix A, bool lower)
static T compute(Matrix m, bool no_diag)
static SGVector< T > compute(Matrix m, bool no_diag)
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
static T compute(Vector a, Vector b)
Vector::Scalar vector_sum(Vector a)
Definition: Redux.h:81
Matrix::Scalar max(Matrix m)
Definition: Redux.h:68
static SGVector< ReturnDataType > compute(SGMatrix< T > m, bool no_diag)

SHOGUN Machine Learning Toolbox - Documentation