48         int32_t radius_x, int32_t radius_y,
 
   49         int32_t pooling_width, int32_t pooling_height,
 
   50         int32_t stride_x, int32_t stride_y,
 
  109     for (int32_t l=0; l<input_indices.
vlen; l++)
 
  129     int32_t num_parameters_per_map =
 
  135         bool* map_param_regularizable =
 
  136             parameter_regularizable.
vector+m*num_parameters_per_map;
 
  138         for (int32_t i=0; i<num_parameters_per_map; i++)
 
  144                 map_param_regularizable[i] = (i != 0);
 
  151                 map_param_regularizable[i] = 0;
 
  161     int32_t num_parameters_per_map =
 
  167             parameters.
vector+m*num_parameters_per_map,
 
  168             num_parameters_per_map, 
false);
 
  193         for (int32_t i=0; i<length; i++)
 
  200         for (int32_t i=0; i<len; i++)
 
  212     int32_t num_parameters_per_map =
 
  218             parameters.
vector+m*num_parameters_per_map,
 
  219             num_parameters_per_map, 
false);
 
  222             parameter_gradients.
vector+m*num_parameters_per_map,
 
  223             num_parameters_per_map, 
false);
 
  240     for (int32_t i=0; i<length; i++)
 
  253     for (int32_t offset=1; offset<parameters.
vlen; offset+=num_parameters_per_map)
 
  263             for (int32_t i=0; i<num_weights; i++)
 
  264                 weights[i] *= multiplier;
 
  269 void CNeuralConvolutionalLayer::init()
 
CNeuralConvolutionalLayer()
 
static T twonorm(const T *x, int32_t len)
|| x ||_2 
 
double norm(double *v, double p, int n)
 
EConvMapActivationFunction m_activation_function
 
virtual void compute_activations(SGVector< float64_t > parameters, CDynamicObjectArray *layers)
 
static float32_t normal_random(float32_t mean, float32_t std_dev)
 
virtual void set_batch_size(int32_t batch_size)
 
SGMatrix< float64_t > m_activations
 
virtual void initialize_neural_layer(CDynamicObjectArray *layers, SGVector< int32_t > input_indices)
 
EInitializationMode m_initialization_mode
 
virtual void enforce_max_norm(SGVector< float64_t > parameters, float64_t max_norm)
 
SGMatrix< float64_t > m_convolution_output_gradients
 
virtual void compute_gradients(SGVector< float64_t > parameters, SGMatrix< float64_t > targets, CDynamicObjectArray *layers, SGVector< float64_t > parameter_gradients)
 
virtual int32_t get_num_neurons()
 
SGVector< int32_t > m_input_indices
 
Base class for neural network layers. 
 
SGMatrix< float64_t > m_activation_gradients
 
Handles convolution and gradient calculation for a single feature map in a convolutional neural netwo...
 
virtual int32_t get_height()
 
CSGObject * element(int32_t idx1, int32_t idx2=0, int32_t idx3=0)
 
ENLAutoencoderPosition autoencoder_position
 
void compute_activations(SGVector< float64_t > parameters, CDynamicObjectArray *layers, SGVector< int32_t > input_indices, SGMatrix< float64_t > activations)
 
virtual void initialize_parameters(SGVector< float64_t > parameters, SGVector< bool > parameter_regularizable, float64_t sigma)
 
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
 
virtual void initialize_neural_layer(CDynamicObjectArray *layers, SGVector< int32_t > input_indices)
 
virtual int32_t get_width()
 
all of classes and functions are contained in the shogun namespace 
 
virtual void set_batch_size(int32_t batch_size)
 
SGMatrix< float64_t > m_max_indices
 
virtual float64_t compute_error(SGMatrix< float64_t > targets)
 
EConvMapActivationFunction
Determines the activation function for neurons in a convolutional feature map. 
 
int32_t m_input_num_channels
 
SGMatrix< float64_t > m_convolution_output
 
static float32_t sqrt(float32_t x)
 
void compute_gradients(SGVector< float64_t > parameters, SGMatrix< float64_t > activations, SGMatrix< float64_t > activation_gradients, CDynamicObjectArray *layers, SGVector< int32_t > input_indices, SGVector< float64_t > parameter_gradients)
 
SGMatrix< bool > m_dropout_mask
 
void pool_activations(SGMatrix< float64_t > activations, int32_t pooling_width, int32_t pooling_height, SGMatrix< float64_t > pooled_activations, SGMatrix< float64_t > max_indices)