34 #ifndef __NEURALCONVOLUTIONALLAYER_H__ 
   35 #define __NEURALCONVOLUTIONALLAYER_H__ 
  103         int32_t radius_x, int32_t radius_y,
 
  104         int32_t pooling_width=1, int32_t pooling_height=1,
 
  105         int32_t stride_x=1, int32_t stride_y=1,
 
  210     virtual const char* 
get_name()
 const { 
return "NeuralConvolutionalLayer"; }
 
CNeuralConvolutionalLayer()
 
EConvMapActivationFunction m_activation_function
 
virtual void compute_activations(SGVector< float64_t > parameters, CDynamicObjectArray *layers)
 
virtual void set_batch_size(int32_t batch_size)
 
EInitializationMode m_initialization_mode
 
virtual void enforce_max_norm(SGVector< float64_t > parameters, float64_t max_norm)
 
SGMatrix< float64_t > m_convolution_output_gradients
 
virtual void compute_gradients(SGVector< float64_t > parameters, SGMatrix< float64_t > targets, CDynamicObjectArray *layers, SGVector< float64_t > parameter_gradients)
 
Base class for neural network layers. 
 
virtual ~CNeuralConvolutionalLayer()
 
virtual void initialize_parameters(SGVector< float64_t > parameters, SGVector< bool > parameter_regularizable, float64_t sigma)
 
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
 
virtual void initialize_neural_layer(CDynamicObjectArray *layers, SGVector< int32_t > input_indices)
 
virtual const char * get_name() const 
 
all of classes and functions are contained in the shogun namespace 
 
Main component in convolutional neural networks 
 
SGMatrix< float64_t > m_max_indices
 
virtual float64_t compute_error(SGMatrix< float64_t > targets)
 
EConvMapActivationFunction
Determines the activation function for neurons in a convolutional feature map. 
 
int32_t m_input_num_channels
 
SGMatrix< float64_t > m_convolution_output