52     use_bias = mch->use_bias;
 
   70 void COnlineLibLinear::init()
 
   88     diag[0]=0;diag[1]=0;diag[2]=0;
 
   89     upper_bound[0]=Cn;upper_bound[1]=0;upper_bound[2]=Cp;
 
  117     diag[0]=0;diag[1]=0;diag[2]=0;
 
  118     upper_bound[0]=Cn;upper_bound[1]=0;upper_bound[2]=Cp;
 
  129     SG_INFO(
"Optimization finished.\n")
 
  132     for (int32_t i=0; i<
w_dim; i++)
 
  136     SG_INFO(
"Objective value = %lf\n", v/2)
 
  144     int32_t y_current = 0;
 
  150     QD = diag[y_current + 1];
 
  162     C = upper_bound[y_current + 1];
 
  163     G += alpha_current*diag[y_current + 1]; 
 
  166     if (alpha_current == 0) 
 
  175     else if (alpha_current == C)
 
  190     if (fabs(PG) > 1.0e-12)
 
  194         d = (alpha_current - alpha_old) * y_current;
 
  196         for (int32_t i=0; i < 
w_dim; ++i)
 
  204     v += alpha_current*(alpha_current*diag[y_current + 1] - 2);
 
  205     if (alpha_current > 0)
 
  212     int32_t y_current = 0;
 
  218     QD = diag[y_current + 1];
 
  230     C = upper_bound[y_current + 1];
 
  231     G += alpha_current*diag[y_current + 1]; 
 
  234     if (alpha_current == 0) 
 
  243     else if (alpha_current == C)
 
  258     if (fabs(PG) > 1.0e-12)
 
  262         d = (alpha_current - alpha_old) * y_current;
 
  272     v += alpha_current*(alpha_current*diag[y_current + 1] - 2);
 
  273     if (alpha_current > 0)
 
  285             SG_ERROR(
"Expected streaming dense feature <float32_t>\n")
 
  293             SG_ERROR(
"Expected streaming sparse feature <float32_t>\n")
 
Class OnlineLinearMachine is a generic interface for linear machines like classifiers which work thro...
T sparse_dot(const SGSparseVector< T > &v)
static const float64_t INFTY
infinity 
SGVector< T > get_vector()
#define SG_NOTIMPLEMENTED
SGSparseVector< T > get_vector()
virtual void train_one(SGVector< float32_t > ex, float64_t label)
virtual void stop_train()
virtual void set_features(CStreamingDotFeatures *feat)
virtual void train_example(CStreamingDotFeatures *feature, float64_t label)
void add(bool *param, const char *name, const char *description="")
virtual ~COnlineLibLinear()
virtual void expand_if_required(float32_t *&vec, int32_t &len)
virtual EFeatureClass get_feature_class() const =0
static float64_t dot(const bool *v1, const bool *v2, int32_t n)
Compute dot product between v1 and v2 (blas optimized) 
Streaming features that support dot products among other operations. 
SGSparseVectorEntry< T > * features
T dense_dot(T alpha, T *vec, int32_t dim, T b)
all of classes and functions are contained in the shogun namespace 
Class implementing a purely online version of CLibLinear, using the L2R_L1LOSS_SVC_DUAL solver only...
CStreamingDotFeatures * features
template class SGSparseVector The assumtion is that the stored SGSparseVectorEntry* vector is orde...
This class implements streaming features with sparse feature vectors. The vector is represented as an...
virtual void start_train()