11 #ifndef _ONLINELINEARCLASSIFIER_H__
12 #define _ONLINELINEARCLASSIFIER_H__
25 class CRegressionLabels;
82 for (int32_t i=0; i<
w_dim; i++)
94 for (int32_t i=0; i<
w_dim; i++)
108 memcpy(
w, src_w,
size_t(src_w_dim)*
sizeof(
float32_t));
122 for (int32_t i=0; i<src_w_dim; i++)
207 virtual const char*
get_name()
const {
return "OnlineLinearMachine"; }
virtual CRegressionLabels * apply_regression(CFeatures *data=NULL)
Class OnlineLinearMachine is a generic interface for linear machines like classifiers which work thro...
Real Labels are real-valued labels.
virtual SGVector< float32_t > get_w()
static const float64_t INFTY
infinity
#define SG_NOTIMPLEMENTED
virtual void set_w(float64_t *src_w, int32_t src_w_dim)
A generic learning machine interface.
virtual float32_t get_bias()
virtual void set_features(CStreamingDotFeatures *feat)
virtual bool train_machine(CFeatures *data=NULL)
virtual float32_t apply_to_current_example()
virtual void start_train()
virtual float64_t apply_one(int32_t vec_idx)
get output for example "vec_idx"
Streaming features that support dot products among other operations.
virtual CStreamingDotFeatures * get_features()
all of classes and functions are contained in the shogun namespace
virtual void get_w(float64_t *&dst_w, int32_t &dst_dims)
CStreamingDotFeatures * features
The class Features is the base class of all feature objects.
virtual const char * get_name() const
Binary Labels for binary classification.
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
virtual bool train_require_labels() const
virtual void set_w(float32_t *src_w, int32_t src_w_dim)
virtual void stop_train()
virtual void train_example(CStreamingDotFeatures *feature, float64_t label)
virtual ~COnlineLinearMachine()
virtual void get_w(float32_t *&dst_w, int32_t &dst_dims)
SGVector< float64_t > apply_get_outputs(CFeatures *data)
virtual void set_bias(float32_t b)