19 : 
CMachine(), w_dim(0), w(NULL), bias(0), features(NULL)
 
   53             SG_ERROR(
"Specified features are not of type CStreamingDotFeatures\n")
 
   69         labels_dynarray->append_element(current_lab);
 
   77     for (int32_t i=0; i<num_labels; i++)
 
   78         labels_array.
vector[i]=(*labels_dynarray)[i];
 
   80     delete labels_dynarray;
 
   99             SG_ERROR(
"Specified features are not of type CStreamingDotFeatures\n")
 
virtual CRegressionLabels * apply_regression(CFeatures *data=NULL)
 
Real Labels are real-valued labels. 
 
virtual void start_parser()=0
 
virtual float32_t dense_dot(const float32_t *vec2, int32_t vec2_len)=0
 
A generic learning machine interface. 
 
virtual void set_features(CStreamingDotFeatures *feat)
 
virtual bool get_next_example()=0
 
Class SGObject is the base class of all shogun objects. 
 
virtual bool train_machine(CFeatures *data=NULL)
 
virtual float32_t apply_to_current_example()
 
virtual void start_train()
 
virtual float64_t apply_one(int32_t vec_idx)
get output for example "vec_idx" 
 
static float64_t dot(const bool *v1, const bool *v2, int32_t n)
Compute dot product between v1 and v2 (blas optimized) 
 
Streaming features that support dot products among other operations. 
 
void add_vector(bool **param, index_t *length, const char *name, const char *description="")
 
all of classes and functions are contained in the shogun namespace 
 
virtual void end_parser()=0
 
CStreamingDotFeatures * features
 
The class Features is the base class of all feature objects. 
 
virtual void release_example()=0
 
virtual float64_t get_label()=0
 
Binary Labels for binary classification. 
 
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
 
virtual void stop_train()
 
bool has_property(EFeatureProperty p) const 
 
virtual void train_example(CStreamingDotFeatures *feature, float64_t label)
 
virtual ~COnlineLinearMachine()
 
SGVector< float64_t > apply_get_outputs(CFeatures *data)