19 :
CMachine(), w_dim(0), w(NULL), bias(0), features(NULL)
53 SG_ERROR(
"Specified features are not of type CStreamingDotFeatures\n")
69 labels_dynarray->append_element(current_lab);
77 for (int32_t i=0; i<num_labels; i++)
78 labels_array.
vector[i]=(*labels_dynarray)[i];
80 delete labels_dynarray;
99 SG_ERROR(
"Specified features are not of type CStreamingDotFeatures\n")
virtual CRegressionLabels * apply_regression(CFeatures *data=NULL)
Real Labels are real-valued labels.
virtual void start_parser()=0
virtual float32_t dense_dot(const float32_t *vec2, int32_t vec2_len)=0
A generic learning machine interface.
virtual void set_features(CStreamingDotFeatures *feat)
virtual bool get_next_example()=0
Class SGObject is the base class of all shogun objects.
virtual bool train_machine(CFeatures *data=NULL)
virtual float32_t apply_to_current_example()
virtual void start_train()
virtual float64_t apply_one(int32_t vec_idx)
get output for example "vec_idx"
static float64_t dot(const bool *v1, const bool *v2, int32_t n)
Compute dot product between v1 and v2 (blas optimized)
Streaming features that support dot products among other operations.
void add_vector(bool **param, index_t *length, const char *name, const char *description="")
all of classes and functions are contained in the shogun namespace
virtual void end_parser()=0
CStreamingDotFeatures * features
The class Features is the base class of all feature objects.
virtual void release_example()=0
virtual float64_t get_label()=0
Binary Labels for binary classification.
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
virtual void stop_train()
bool has_property(EFeatureProperty p) const
virtual void train_example(CStreamingDotFeatures *feature, float64_t label)
virtual ~COnlineLinearMachine()
SGVector< float64_t > apply_get_outputs(CFeatures *data)