Positional PWM.
Definition at line 27 of file PositionalPWM.h.
|
| CPositionalPWM () |
|
virtual | ~CPositionalPWM () |
|
virtual bool | train (CFeatures *data=NULL) |
|
virtual int32_t | get_num_model_parameters () |
|
virtual float64_t | get_log_model_parameter (int32_t num_param) |
|
virtual float64_t | get_log_derivative (int32_t num_param, int32_t num_example) |
|
virtual float64_t | get_log_likelihood_example (int32_t num_example) |
|
float64_t | get_log_likelihood_window (uint8_t *window, int32_t len, float64_t pos) |
|
virtual float64_t | get_sigma () |
|
virtual void | set_sigma (float64_t sigma) |
|
virtual float64_t | get_mean () |
|
virtual void | set_mean (float64_t mean) |
|
virtual void | set_pwm (SGMatrix< float64_t > pwm) |
|
virtual SGMatrix< float64_t > | get_pwm () const |
|
virtual SGMatrix< float64_t > | get_w () const |
|
virtual SGMatrix< float64_t > | get_scoring (int32_t d) |
|
void | compute_w (int32_t num_pos) |
|
void | compute_scoring (int32_t max_degree) |
|
virtual const char * | get_name () const |
|
virtual int32_t | get_num_relevant_model_parameters () |
|
virtual float64_t | get_log_likelihood_sample () |
|
virtual SGVector< float64_t > | get_log_likelihood () |
|
virtual float64_t | get_model_parameter (int32_t num_param) |
|
virtual float64_t | get_derivative (int32_t num_param, int32_t num_example) |
|
virtual float64_t | get_likelihood_example (int32_t num_example) |
|
virtual SGVector< float64_t > | get_likelihood_for_all_examples () |
|
virtual void | set_features (CFeatures *f) |
|
virtual CFeatures * | get_features () |
|
virtual void | set_pseudo_count (float64_t pseudo) |
|
virtual float64_t | get_pseudo_count () |
|
virtual float64_t | update_params_em (float64_t *alpha_k, int32_t len) |
|
virtual CSGObject * | shallow_copy () const |
|
virtual CSGObject * | deep_copy () const |
|
virtual bool | is_generic (EPrimitiveType *generic) const |
|
template<class T > |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
template<> |
void | set_generic () |
|
void | unset_generic () |
|
virtual void | print_serializable (const char *prefix="") |
|
virtual bool | save_serializable (CSerializableFile *file, const char *prefix="") |
|
virtual bool | load_serializable (CSerializableFile *file, const char *prefix="") |
|
void | set_global_io (SGIO *io) |
|
SGIO * | get_global_io () |
|
void | set_global_parallel (Parallel *parallel) |
|
Parallel * | get_global_parallel () |
|
void | set_global_version (Version *version) |
|
Version * | get_global_version () |
|
SGStringList< char > | get_modelsel_names () |
|
void | print_modsel_params () |
|
char * | get_modsel_param_descr (const char *param_name) |
|
index_t | get_modsel_param_index (const char *param_name) |
|
void | build_gradient_parameter_dictionary (CMap< TParameter *, CSGObject * > *dict) |
|
virtual void | update_parameter_hash () |
|
virtual bool | parameter_hash_changed () |
|
virtual bool | equals (CSGObject *other, float64_t accuracy=0.0, bool tolerant=false) |
|
virtual CSGObject * | clone () |
|
Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.
- Parameters
-
dict | dictionary of parameters to be built. |
Definition at line 597 of file SGObject.cpp.
Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.
- Returns
- an identical copy of the given object, which is disjoint in memory. NULL if the clone fails. Note that the returned object is SG_REF'ed
Definition at line 714 of file SGObject.cpp.
void compute_scoring |
( |
int32_t |
max_degree | ) |
|
void compute_w |
( |
int32_t |
num_pos | ) |
|
A deep copy. All the instance variables will also be copied.
Definition at line 198 of file SGObject.cpp.
Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!
May be overwritten but please do with care! Should not be necessary in most cases.
- Parameters
-
other | object to compare with |
accuracy | accuracy to use for comparison (optional) |
tolerant | allows linient check on float equality (within accuracy) |
- Returns
- true if all parameters were equal, false if not
Definition at line 618 of file SGObject.cpp.
virtual float64_t get_derivative |
( |
int32_t |
num_param, |
|
|
int32_t |
num_example |
|
) |
| |
|
virtualinherited |
get partial derivative of likelihood function
- Parameters
-
num_param | partial derivative against which param |
num_example | which example |
- Returns
- derivative of likelihood function
Definition at line 134 of file Distribution.h.
get feature vectors
- Returns
- feature vectors
Definition at line 171 of file Distribution.h.
get the io object
- Returns
- io object
Definition at line 235 of file SGObject.cpp.
get the parallel object
- Returns
- parallel object
Definition at line 277 of file SGObject.cpp.
get the version object
- Returns
- version object
Definition at line 290 of file SGObject.cpp.
virtual float64_t get_likelihood_example |
( |
int32_t |
num_example | ) |
|
|
virtualinherited |
compute likelihood for example
- Parameters
-
- Returns
- likelihood for example
Reimplemented in CGMM, and CLinearHMM.
Definition at line 145 of file Distribution.h.
compute likelihood for all vectors in sample
- Returns
- likelihood vector for all examples
Definition at line 65 of file Distribution.cpp.
float64_t get_log_derivative |
( |
int32_t |
num_param, |
|
|
int32_t |
num_example |
|
) |
| |
|
virtual |
get partial derivative of likelihood function (logarithmic)
- Parameters
-
num_param | derivative against which param |
num_example | which example |
- Returns
- derivative of likelihood (logarithmic)
Implements CDistribution.
Definition at line 57 of file PositionalPWM.cpp.
compute log likelihood for each example
- Returns
- log likelihood vector
Definition at line 39 of file Distribution.cpp.
float64_t get_log_likelihood_example |
( |
int32_t |
num_example | ) |
|
|
virtual |
compute log likelihood for example
abstract base method
- Parameters
-
- Returns
- log likelihood for example
Implements CDistribution.
Definition at line 63 of file PositionalPWM.cpp.
compute log likelihood for whole sample
- Returns
- log likelihood for whole sample
Definition at line 28 of file Distribution.cpp.
float64_t get_log_model_parameter |
( |
int32_t |
num_param | ) |
|
|
virtual |
get model parameter (logarithmic)
- Returns
- model parameter (logarithmic) if num_param < m_dim returns an element from the mean, else return an element from the covariance
Implements CDistribution.
Definition at line 43 of file PositionalPWM.cpp.
virtual float64_t get_model_parameter |
( |
int32_t |
num_param | ) |
|
|
virtualinherited |
get model parameter
- Parameters
-
- Returns
- model parameter
Definition at line 123 of file Distribution.h.
- Returns
- vector of names of all parameters which are registered for model selection
Definition at line 498 of file SGObject.cpp.
char * get_modsel_param_descr |
( |
const char * |
param_name | ) |
|
|
inherited |
Returns description of a given parameter string, if it exists. SG_ERROR otherwise
- Parameters
-
param_name | name of the parameter |
- Returns
- description of the parameter
Definition at line 522 of file SGObject.cpp.
index_t get_modsel_param_index |
( |
const char * |
param_name | ) |
|
|
inherited |
Returns index of model selection parameter with provided index
- Parameters
-
param_name | name of model selection parameter |
- Returns
- index of model selection parameter with provided name, -1 if there is no such
Definition at line 535 of file SGObject.cpp.
virtual const char* get_name |
( |
| ) |
const |
|
virtual |
int32_t get_num_model_parameters |
( |
| ) |
|
|
virtual |
int32_t get_num_relevant_model_parameters |
( |
| ) |
|
|
virtualinherited |
get number of parameters in model that are relevant, i.e. > ALMOST_NEG_INFTY
- Returns
- number of relevant model parameters
Definition at line 52 of file Distribution.cpp.
get poim u
- Parameters
-
d | degree for which poim should be obtained |
- Returns
- poim u
Definition at line 218 of file PositionalPWM.cpp.
bool is_generic |
( |
EPrimitiveType * |
generic | ) |
const |
|
virtualinherited |
If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.
- Parameters
-
generic | set to the type of the generic if returning TRUE |
- Returns
- TRUE if a class template.
Definition at line 296 of file SGObject.cpp.
Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!
- Parameters
-
file | where to load from |
prefix | prefix for members |
- Returns
- TRUE if done, otherwise FALSE
Definition at line 369 of file SGObject.cpp.
|
protectedvirtualinherited |
|
protectedvirtualinherited |
obtain from generic
- Parameters
-
- Returns
- Distribution object
Definition at line 85 of file Distribution.cpp.
bool parameter_hash_changed |
( |
| ) |
|
|
virtualinherited |
- Returns
- whether parameter combination has changed since last update
Definition at line 262 of file SGObject.cpp.
void print_modsel_params |
( |
| ) |
|
|
inherited |
prints all parameter registered for model selection and their type
Definition at line 474 of file SGObject.cpp.
void print_serializable |
( |
const char * |
prefix = "" | ) |
|
|
virtualinherited |
prints registered parameters out
- Parameters
-
Definition at line 308 of file SGObject.cpp.
Save this object to file.
- Parameters
-
file | where to save the object; will be closed during returning if PREFIX is an empty string. |
prefix | prefix for members |
- Returns
- TRUE if done, otherwise FALSE
Definition at line 314 of file SGObject.cpp.
|
protectedvirtualinherited |
Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.
- Exceptions
-
Reimplemented in CKernel.
Definition at line 436 of file SGObject.cpp.
|
protectedvirtualinherited |
void set_global_io |
( |
SGIO * |
io | ) |
|
|
inherited |
void set_global_parallel |
( |
Parallel * |
parallel | ) |
|
|
inherited |
set the parallel object
- Parameters
-
parallel | parallel object to use |
Definition at line 241 of file SGObject.cpp.
void set_global_version |
( |
Version * |
version | ) |
|
|
inherited |
set the version object
- Parameters
-
version | version object to use |
Definition at line 283 of file SGObject.cpp.
virtual void set_pseudo_count |
( |
float64_t |
pseudo | ) |
|
|
virtualinherited |
set pwm
- Parameters
-
pwm | new pwm (values must be in logspace) |
Definition at line 117 of file PositionalPWM.h.
A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.
Reimplemented in CGaussianKernel.
Definition at line 192 of file SGObject.cpp.
unset generic type
this has to be called in classes specializing a template class
Definition at line 303 of file SGObject.cpp.
void update_parameter_hash |
( |
| ) |
|
|
virtualinherited |
Updates the hash of current parameter combination
Definition at line 248 of file SGObject.cpp.
update parameters in the em maximization step for mixture model of which this distribution is a part
abstract base method
- Parameters
-
alpha_k | "belongingness" values of various data points |
len | length of alpha_k array |
- Returns
- sum of alpha_k values
Reimplemented in CGaussian.
Definition at line 78 of file Distribution.cpp.
parameters wrt which we can compute gradients
Definition at line 384 of file SGObject.h.
Hash of parameter values
Definition at line 387 of file SGObject.h.
model selection parameters
Definition at line 381 of file SGObject.h.
The documentation for this class was generated from the following files: