110     virtual const char* 
get_name()
 const { 
return "CARTree"; }
 
CLabels * apply_from_current_node(CDenseFeatures< float64_t > *feats, bnode_t *current)
 
virtual int32_t compute_best_attribute(const SGMatrix< float64_t > &mat, const SGVector< float64_t > &weights, CLabels *labels, SGVector< float64_t > &left, SGVector< float64_t > &right, SGVector< bool > &is_left_final, int32_t &num_missing, int32_t &count_left, int32_t &count_right, int32_t subset_size=0, const SGVector< int32_t > &active_indices=SGVector< index_t >())
 
The node of the tree structure forming a TreeMachine The node contains pointer to its parent and poin...
 
int32_t get_max_depth() const 
 
void set_weights(SGVector< float64_t > w)
 
Real Labels are real-valued labels. 
 
SGVector< bool > get_feature_types() const 
 
int32_t get_min_node_size() const 
 
float64_t get_label_epsilon()
 
void set_machine_problem_type(EProblemType mode)
 
int32_t get_num_folds() const 
 
CDynamicObjectArray * prune_tree(CTreeMachine< CARTreeNodeData > *tree)
 
The class Labels models labels, i.e. class assignments of objects. 
 
SGMatrix< index_t > m_sorted_indices
 
virtual CMulticlassLabels * apply_multiclass(CFeatures *data=NULL)
 
float64_t find_weakest_alpha(bnode_t *node)
 
void form_t1(bnode_t *node)
 
virtual bool is_label_valid(CLabels *lab) const 
 
virtual const char * get_name() const 
 
static const float64_t EQ_DELTA
 
SGVector< bool > surrogate_split(SGMatrix< float64_t > data, SGVector< float64_t > weights, SGVector< bool > nm_left, int32_t attr)
 
virtual bool train_machine(CFeatures *data=NULL)
 
float64_t m_label_epsilon
 
virtual void set_labels(CLabels *lab)
 
Multiclass Labels for multi-class classification. 
 
void clear_feature_types()
 
float64_t gain(SGVector< float64_t > wleft, SGVector< float64_t > wright, SGVector< float64_t > wtotal, SGVector< float64_t > labels)
 
float64_t least_squares_deviation(const SGVector< float64_t > &labels, const SGVector< float64_t > &weights, float64_t &total_weight)
 
void set_min_node_size(int32_t nsize)
 
void set_sorted_features(SGMatrix< float64_t > &sorted_feats, SGMatrix< index_t > &sorted_indices)
 
void handle_missing_vecs_for_continuous_surrogate(SGMatrix< float64_t > m, CDynamicArray< int32_t > *missing_vecs, CDynamicArray< float64_t > *association_index, CDynamicArray< int32_t > *intersect_vecs, SGVector< bool > is_left, SGVector< float64_t > weights, float64_t p, int32_t attr)
 
void set_num_folds(int32_t folds)
 
float64_t gini_impurity_index(const SGVector< float64_t > &weighted_lab_classes, float64_t &total_weight)
 
SGVector< float64_t > get_weights() const 
 
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
 
SGMatrix< float64_t > m_sorted_features
 
virtual CBinaryTreeMachineNode< CARTreeNodeData > * CARTtrain(CFeatures *data, SGVector< float64_t > weights, CLabels *labels, int32_t level)
 
void set_max_depth(int32_t depth)
 
void handle_missing_vecs_for_nominal_surrogate(SGMatrix< float64_t > m, CDynamicArray< int32_t > *missing_vecs, CDynamicArray< float64_t > *association_index, CDynamicArray< int32_t > *intersect_vecs, SGVector< bool > is_left, SGVector< float64_t > weights, float64_t p, int32_t attr)
 
This class implements the Classification And Regression Trees algorithm by Breiman et al for decision...
 
void pre_sort_features(CFeatures *data, SGMatrix< float64_t > &sorted_feats, SGMatrix< index_t > &sorted_indices)
 
all of classes and functions are contained in the shogun namespace 
 
void set_feature_types(SGVector< bool > ft)
 
The class Features is the base class of all feature objects. 
 
virtual EProblemType get_machine_problem_type() const 
 
SGVector< bool > m_nominal
 
float64_t compute_error(CLabels *labels, CLabels *reference, SGVector< float64_t > weights)
 
void cut_weakest_link(bnode_t *node, float64_t alpha)
 
static const float64_t MIN_SPLIT_GAIN
 
virtual CRegressionLabels * apply_regression(CFeatures *data=NULL)
 
void prune_using_test_dataset(CDenseFeatures< float64_t > *feats, CLabels *gnd_truth, SGVector< float64_t > weights=SGVector< float64_t >())
 
class TreeMachine, a base class for tree based multiclass classifiers. This class is derived from CBa...
 
SGVector< float64_t > m_weights
 
CDynamicArray< float64_t > * m_alphas
 
SGVector< float64_t > get_unique_labels(SGVector< float64_t > labels_vec, int32_t &n_ulabels)
 
void set_label_epsilon(float64_t epsilon)
 
void prune_by_cross_validation(CDenseFeatures< float64_t > *data, int32_t folds)
 
static const float64_t MISSING