32 #ifndef CGAUSSIANLIKELIHOOD_H_
33 #define CGAUSSIANLIKELIHOOD_H_
72 virtual const char*
get_name()
const {
return "GaussianLikelihood"; }
86 REQUIRE(sigma>0.0,
"Standard deviation (%f) must be greater than zero\n",
Class that models Gaussian likelihood.
virtual SGVector< float64_t > get_log_probability_f(const CLabels *lab, SGVector< float64_t > func) const
The class Labels models labels, i.e. class assignments of objects.
void set_sigma(float64_t sigma)
virtual float64_t get_second_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const
virtual ~CGaussianLikelihood()
virtual ELikelihoodModelType get_model_type() const
virtual SGVector< float64_t > get_first_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual SGVector< float64_t > get_predictive_variances(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const
virtual SGVector< float64_t > get_predictive_means(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const
virtual const char * get_name() const
virtual float64_t get_first_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const
static CGaussianLikelihood * obtain_from_generic(CLikelihoodModel *lik)
virtual SGVector< float64_t > get_second_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual SGVector< float64_t > get_log_zeroth_moments(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const
all of classes and functions are contained in the shogun namespace
static float64_t exp(float64_t x)
static float64_t log(float64_t v)
virtual SGVector< float64_t > get_log_probability_derivative_f(const CLabels *lab, SGVector< float64_t > func, index_t i) const
virtual bool supports_regression() const
virtual SGVector< float64_t > get_third_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
The Likelihood model base class.