20 using namespace Eigen;
 
   32     m_tau[0]=0; m_tau[1]=1; m_tau[2]=2; m_tau[3]=3;
 
   60     REQUIRE(features, 
"features is null");
 
   78     for (
int t = 0; t < N; t++)
 
   81         EM = cor(EX,m_tau[t]);
 
   94     for (
int t = 0; t < C.cols(); t++)
 
   95         C.col(t) /= C.col(t).maxCoeff();
 
  114             VectorXd mean = x.rowwise().sum();
 
  116             x = x.colwise() - mean;
 
  125         K = (L * R.transpose()) / (n-tau);
 
  128         K = (K + K.transpose()) / 2.0;
 
T * get_matrix(index_t matIdx) const 
SGNDArray< float64_t > get_covs() const 
SGVector< float64_t > get_tau() const 
void set_tau(SGVector< float64_t > tau)
all of classes and functions are contained in the shogun namespace 
class ICAConverter Base class for ICA algorithms 
The class Features is the base class of all feature objects. 
SGMatrix< float64_t > m_mixing_matrix
static SGMatrix< float64_t > diagonalize(SGNDArray< float64_t > C, SGMatrix< float64_t > V0=SGMatrix< float64_t >(NULL, 0, 0, false), double eps=CMath::MACHINE_EPSILON, int itermax=200)
virtual CFeatures * apply(CFeatures *features)
static void inverse(SGMatrix< float64_t > matrix)
inverses square matrix in-place