12 #ifndef _KERNEL_MACHINE_H__
13 #define _KERNEL_MACHINE_H__
26 class CRegressionLabels;
80 virtual const char*
get_name()
const {
return "KernelMachine"; }
virtual float64_t apply_one(int32_t num)
SGVector< float64_t > apply_get_outputs(CFeatures *data)
SGVector< int32_t > m_svs
int32_t get_num_support_vectors()
void set_bias_enabled(bool enable_bias)
virtual CBinaryLabels * apply_locked_binary(SGVector< index_t > indices)
Real Labels are real-valued labels.
The class Labels models labels, i.e. class assignments of objects.
The Custom Kernel allows for custom user provided kernel matrices.
virtual const char * get_name() const
virtual CRegressionLabels * apply_regression(CFeatures *data=NULL)
SGVector< int32_t > get_support_vectors()
CCustomKernel * m_custom_kernel
static void * apply_helper(void *p)
CKernel * m_kernel_backup
A generic KernelMachine interface.
A generic learning machine interface.
void set_support_vectors(SGVector< int32_t > svs)
virtual bool train_locked(SGVector< index_t > indices)
SGVector< float64_t > m_alpha
virtual void store_model_features()
bool get_batch_computation_enabled()
void set_bias(float64_t bias)
void set_batch_computation_enabled(bool enable)
virtual SGVector< float64_t > apply_locked_get_output(SGVector< index_t > indices)
bool set_alpha(int32_t idx, float64_t val)
virtual void data_unlock()
float64_t get_alpha(int32_t idx)
bool use_batch_computation
virtual bool supports_locking() const
bool set_support_vector(int32_t idx, int32_t val)
bool init_kernel_optimization()
int32_t get_support_vector(int32_t idx)
SGVector< float64_t > get_alphas()
all of classes and functions are contained in the shogun namespace
bool get_linadd_enabled()
virtual CRegressionLabels * apply_locked_regression(SGVector< index_t > indices)
void set_alphas(SGVector< float64_t > alphas)
The class Features is the base class of all feature objects.
void set_linadd_enabled(bool enable)
Binary Labels for binary classification.
void set_kernel(CKernel *k)
virtual ~CKernelMachine()
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
bool create_new_model(int32_t num)
virtual void data_lock(CLabels *labs, CFeatures *features=NULL)