58 REQUIRE(fun,
"the cost function must be a stochastic cost function\n");
79 void SMDMinimizer::init()
88 REQUIRE(mapping_fun,
"mapping/projection function must be set\n");
virtual SGVector< float64_t > get_gradient()=0
The base mapping function for mirror descend.
DescendUpdater * m_gradient_updater
virtual void update_variable(SGVector< float64_t > variable, SGVector< float64_t > dual_variable)=0
virtual void init_minimization()
virtual void begin_sample()=0
FirstOrderCostFunction * m_fun
virtual void init_minimization()
virtual void update_variable(SGVector< float64_t > variable_reference, SGVector< float64_t > negative_descend_direction, float64_t learning_rate)=0
virtual float64_t minimize()
The first order stochastic cost function base class.
The base class for stochastic first-order gradient-based minimizers.
virtual void update_gradient(SGVector< float64_t > gradient, SGVector< float64_t > var)
MappingFunction * m_mapping_fun
Class SGObject is the base class of all shogun objects.
LearningRate * m_learning_rate
virtual SGVector< float64_t > get_dual_variable(SGVector< float64_t > variable)=0
virtual float64_t get_penalty(SGVector< float64_t > var)
virtual float64_t get_cost()=0
virtual void set_mapping_function(MappingFunction *mapping_fun)
all of classes and functions are contained in the shogun namespace
virtual bool next_sample()=0
virtual float64_t get_learning_rate(int32_t iter_counter)=0
virtual SGVector< float64_t > obtain_variable_reference()=0