SHOGUN  4.2.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
SingleSparseInference.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (W) 2015 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  */
31 
32 
33 #ifndef CSINGLESPARSEINFERENCE_H
34 #define CSINGLESPARSEINFERENCE_H
35 
36 #include <shogun/lib/config.h>
39 #include <shogun/lib/Lock.h>
40 
41 namespace shogun
42 {
43 class SingleSparseInferenceCostFunction;
44 
49 {
51 
52 public:
55 
65  CSingleSparseInference(CKernel* kernel, CFeatures* features,
66  CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model,
67  CFeatures* inducing_features);
68 
69  virtual ~CSingleSparseInference();
70 
75  virtual const char* get_name() const { return "SingleSparseInference"; }
76 
81  virtual void set_kernel(CKernel* kern);
82 
86  virtual void optimize_inducing_features();
87 
99 
111 
117 
122  virtual void set_max_iterations_for_inducing_features(int32_t it);
123 
129  virtual void enable_optimizing_inducing_features(bool is_optmization, FirstOrderMinimizer* minimizer=NULL);
130 
131 protected:
132 
148 
156  const TParameter* param)=0;
157 
158 
167  const TParameter* param);
168 
169 
178  const TParameter* param);
179 
185  virtual void check_bound(SGVector<float64_t> bound, const char* name);
186 
189 
192 
195 
198 
201 
210  virtual void check_fully_sparse();
211 
222 
225 
228 
231 private:
232  /* init */
233  void init();
234 };
235 }
236 #endif /* CSINGLESPARSEINFERENCE_H */
virtual SGVector< float64_t > get_derivative_wrt_inference_method(const TParameter *param)
The class Labels models labels, i.e. class assignments of objects.
Definition: Labels.h:43
virtual SGVector< float64_t > get_derivative_wrt_inducing_features(const TParameter *param)=0
virtual void set_kernel(CKernel *kern)
virtual void set_max_iterations_for_inducing_features(int32_t it)
parameter struct
FirstOrderMinimizer * m_inducing_minimizer
virtual void enable_optimizing_inducing_features(bool is_optmization, FirstOrderMinimizer *minimizer=NULL)
An abstract class of the mean function.
Definition: MeanFunction.h:49
virtual void set_tolearance_for_inducing_features(float64_t tol)
Class Lock used for synchronization in concurrent programs.
Definition: Lock.h:17
The sparse inference base class for classification and regression for 1-D labels (1D regression and b...
virtual const char * get_name() const
virtual SGVector< float64_t > get_derivative_wrt_kernel(const TParameter *param)
double float64_t
Definition: common.h:50
virtual void set_upper_bound_of_inducing_features(SGVector< float64_t > bound)
virtual void check_bound(SGVector< float64_t > bound, const char *name)
virtual void set_lower_bound_of_inducing_features(SGVector< float64_t > bound)
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
The class Features is the base class of all feature objects.
Definition: Features.h:68
virtual float64_t get_derivative_related_cov(SGVector< float64_t > ddiagKi, SGMatrix< float64_t > dKuui, SGMatrix< float64_t > dKui)=0
The Kernel base class.
Definition: Kernel.h:159
virtual SGVector< float64_t > get_derivative_wrt_inducing_noise(const TParameter *param)=0
The Fully Independent Conditional Training inference base class.
The Likelihood model base class.
The first order minimizer base class.

SHOGUN Machine Learning Toolbox - Documentation