SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
List of all members | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions
CStudentsTLikelihood Class Reference

Detailed Description

Class that models a Student's-t likelihood.

\[ p(y|f)=\prod_{i=1}^{n} \frac{\Gamma(\frac{\nu+1}{2})} {\Gamma(\frac{\nu}{2})\sqrt{\nu\pi}\sigma} \left(1+\frac{(y_i-f_i)^2}{\nu\sigma^2} \right)^{-\frac{\nu+1}{2}} \]

The hyperparameters of the Student's t-likelihood model are \(\sigma\) - scale parameter, and \(\nu\) - degrees of freedom.

Definition at line 38 of file StudentsTLikelihood.h.

Inheritance diagram for CStudentsTLikelihood:
Inheritance graph
[legend]

Public Member Functions

 CStudentsTLikelihood ()
 CStudentsTLikelihood (float64_t sigma, float64_t df)
virtual ~CStudentsTLikelihood ()
virtual const char * get_name () const
float64_t get_sigma ()
void set_sigma (float64_t sigma)
float64_t get_degrees_freedom ()
void set_degrees_freedom (float64_t df)
virtual SGVector< float64_tget_predictive_means (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const
virtual SGVector< float64_tget_predictive_variances (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const
virtual ELikelihoodModelType get_model_type () const
virtual SGVector< float64_tget_log_probability_f (const CLabels *lab, SGVector< float64_t > func) const
virtual SGVector< float64_tget_log_probability_derivative_f (const CLabels *lab, SGVector< float64_t > func, index_t i) const
virtual SGVector< float64_tget_first_derivative (const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual SGVector< float64_tget_second_derivative (const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual SGVector< float64_tget_third_derivative (const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual SGVector< float64_tget_log_zeroth_moments (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const
virtual float64_t get_first_moment (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const
virtual float64_t get_second_moment (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const
virtual bool supports_regression () const
virtual SGVector< float64_tget_predictive_log_probabilities (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL)
virtual SGVector< float64_tget_log_probability_fmatrix (const CLabels *lab, SGMatrix< float64_t > F) const
virtual SGVector< float64_tget_first_moments (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const
virtual SGVector< float64_tget_second_moments (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const
virtual bool supports_binary () const
virtual bool supports_multiclass () const
virtual void set_distribution (SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab)
virtual SGVector< float64_tget_variational_expection ()
virtual SGVector< float64_tget_variational_first_derivative (const TParameter *param) const
virtual CSGObjectshallow_copy () const
virtual CSGObjectdeep_copy () const
virtual bool is_generic (EPrimitiveType *generic) const
template<class T >
void set_generic ()
void unset_generic ()
virtual void print_serializable (const char *prefix="")
virtual bool save_serializable (CSerializableFile *file, const char *prefix="", int32_t param_version=Version::get_version_parameter())
virtual bool load_serializable (CSerializableFile *file, const char *prefix="", int32_t param_version=Version::get_version_parameter())
DynArray< TParameter * > * load_file_parameters (const SGParamInfo *param_info, int32_t file_version, CSerializableFile *file, const char *prefix="")
DynArray< TParameter * > * load_all_file_parameters (int32_t file_version, int32_t current_version, CSerializableFile *file, const char *prefix="")
void map_parameters (DynArray< TParameter * > *param_base, int32_t &base_version, DynArray< const SGParamInfo * > *target_param_infos)
void set_global_io (SGIO *io)
SGIOget_global_io ()
void set_global_parallel (Parallel *parallel)
Parallelget_global_parallel ()
void set_global_version (Version *version)
Versionget_global_version ()
SGStringList< char > get_modelsel_names ()
void print_modsel_params ()
char * get_modsel_param_descr (const char *param_name)
index_t get_modsel_param_index (const char *param_name)
void build_gradient_parameter_dictionary (CMap< TParameter *, CSGObject * > *dict)
virtual void update_parameter_hash ()
virtual bool parameter_hash_changed ()
virtual bool equals (CSGObject *other, float64_t accuracy=0.0, bool tolerant=false)
virtual CSGObjectclone ()

Static Public Member Functions

static CStudentsTLikelihoodobtain_from_generic (CLikelihoodModel *likelihood)

Public Attributes

SGIOio
Parallelparallel
Versionversion
Parameterm_parameters
Parameterm_model_selection_parameters
Parameterm_gradient_parameters
ParameterMapm_parameter_map
uint32_t m_hash

Protected Member Functions

virtual TParametermigrate (DynArray< TParameter * > *param_base, const SGParamInfo *target)
virtual void one_to_one_migration_prepare (DynArray< TParameter * > *param_base, const SGParamInfo *target, TParameter *&replacement, TParameter *&to_migrate, char *old_name=NULL)
virtual void load_serializable_pre () throw (ShogunException)
virtual void load_serializable_post () throw (ShogunException)
virtual void save_serializable_pre () throw (ShogunException)
virtual void save_serializable_post () throw (ShogunException)

Constructor & Destructor Documentation

default constructor

Definition at line 244 of file StudentsTLikelihood.cpp.

constructor

Parameters
sigmanoise variance
dfdegrees of freedom

Definition at line 249 of file StudentsTLikelihood.cpp.

~CStudentsTLikelihood ( )
virtual

Definition at line 268 of file StudentsTLikelihood.cpp.

Member Function Documentation

void build_gradient_parameter_dictionary ( CMap< TParameter *, CSGObject * > *  dict)
inherited

Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.

Parameters
dictdictionary of parameters to be built.

Definition at line 1185 of file SGObject.cpp.

CSGObject * clone ( )
virtualinherited

Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.

Returns
an identical copy of the given object, which is disjoint in memory. NULL if the clone fails. Note that the returned object is SG_REF'ed

Definition at line 1302 of file SGObject.cpp.

CSGObject * deep_copy ( ) const
virtualinherited

A deep copy. All the instance variables will also be copied.

Definition at line 146 of file SGObject.cpp.

bool equals ( CSGObject other,
float64_t  accuracy = 0.0,
bool  tolerant = false 
)
virtualinherited

Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!

May be overwritten but please do with care! Should not be necessary in most cases.

Parameters
otherobject to compare with
accuracyaccuracy to use for comparison (optional)
tolerantallows linient check on float equality (within accuracy)
Returns
true if all parameters were equal, false if not

Definition at line 1206 of file SGObject.cpp.

float64_t get_degrees_freedom ( )

get degrees of freedom

Returns
degrees of freedom

Definition at line 79 of file StudentsTLikelihood.h.

SGVector< float64_t > get_first_derivative ( const CLabels lab,
SGVector< float64_t func,
const TParameter param 
) const
virtual

get derivative of log likelihood \(log(P(y|f))\) with respect to given parameter

Parameters
lablabels used
funcfunction location
paramparameter
Returns
derivative

Reimplemented from CLikelihoodModel.

Definition at line 393 of file StudentsTLikelihood.cpp.

float64_t get_first_moment ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab,
index_t  i 
) const
virtual

returns the first moment of a given (unnormalized) probability distribution \(q(f_i) = Z_i^-1 p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\), where \( Z_i=\int p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\).

This method is useful for EP local likelihood approximation.

Parameters
mumean of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
s2variance of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
lablabels \(y_i\)
iindex i
Returns
first moment of \(q(f_i)\)

Implements CLikelihoodModel.

Definition at line 612 of file StudentsTLikelihood.cpp.

SGVector< float64_t > get_first_moments ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab 
) const
virtualinherited

returns the first moment of a given (unnormalized) probability distribution \(q(f_i) = Z_i^-1 p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\) for each \(f_i\), where \( Z_i=\int p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\).

Wrapper method which calls get_first_moment multiple times.

Parameters
mumean of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
s2variance of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
lablabels \(y_i\)
Returns
the first moment of \(q(f_i)\) for each \(f_i\)

Definition at line 52 of file LikelihoodModel.cpp.

SGIO * get_global_io ( )
inherited

get the io object

Returns
io object

Definition at line 183 of file SGObject.cpp.

Parallel * get_global_parallel ( )
inherited

get the parallel object

Returns
parallel object

Definition at line 224 of file SGObject.cpp.

Version * get_global_version ( )
inherited

get the version object

Returns
version object

Definition at line 237 of file SGObject.cpp.

SGVector< float64_t > get_log_probability_derivative_f ( const CLabels lab,
SGVector< float64_t func,
index_t  i 
) const
virtual

get derivative of log likelihood \(log(P(y|f))\) with respect to function location \(f\)

Parameters
lablabels used
funcfunction location
iindex, choices are 1, 2, and 3 for first, second, and third derivatives respectively
Returns
derivative

Implements CLikelihoodModel.

Definition at line 339 of file StudentsTLikelihood.cpp.

SGVector< float64_t > get_log_probability_f ( const CLabels lab,
SGVector< float64_t func 
) const
virtual

returns the logarithm of the point-wise likelihood \(log(p(y_i|f_i))\) for each label \(y_i\).

One can evaluate log-likelihood like: \(log(p(y|f)) = \sum_{i=1}^{n} log(p(y_i|f_i))\)

Parameters
lablabels \(y_i\)
funcvalues of the function \(f_i\)
Returns
logarithm of the point-wise likelihood

Implements CLikelihoodModel.

Definition at line 307 of file StudentsTLikelihood.cpp.

SGVector< float64_t > get_log_probability_fmatrix ( const CLabels lab,
SGMatrix< float64_t F 
) const
virtualinherited

Returns the log-likelihood \(log(p(y|f)) = \sum_{i=1}^{n} log(p(y_i|f_i))\) for each of the provided functions \( f \) in the given matrix.

Wrapper method which calls get_log_probability_f multiple times.

Parameters
lablabels \(y_i\)
Fvalues of the function \(f_i\) where each column of the matrix is one function \( f \).
Returns
log-likelihood for every provided function

Definition at line 31 of file LikelihoodModel.cpp.

SGVector< float64_t > get_log_zeroth_moments ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab 
) const
virtual

returns the zeroth moment of a given (unnormalized) probability distribution:

\[ log(Z_i) = log\left(\int p(y_i|f_i) \mathcal{N}(f_i|\mu,\sigma^2) df_i\right) \]

for each \(f_i\).

Parameters
mumean of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
s2variance of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
lablabels \(y_i\)
Returns
log zeroth moments \(log(Z_i)\)

Implements CLikelihoodModel.

Definition at line 549 of file StudentsTLikelihood.cpp.

virtual ELikelihoodModelType get_model_type ( ) const
virtual

get model type

Returns
model type Student's-t

Reimplemented from CLikelihoodModel.

Definition at line 136 of file StudentsTLikelihood.h.

SGStringList< char > get_modelsel_names ( )
inherited
Returns
vector of names of all parameters which are registered for model selection

Definition at line 1077 of file SGObject.cpp.

char * get_modsel_param_descr ( const char *  param_name)
inherited

Returns description of a given parameter string, if it exists. SG_ERROR otherwise

Parameters
param_namename of the parameter
Returns
description of the parameter

Definition at line 1101 of file SGObject.cpp.

index_t get_modsel_param_index ( const char *  param_name)
inherited

Returns index of model selection parameter with provided index

Parameters
param_namename of model selection parameter
Returns
index of model selection parameter with provided name, -1 if there is no such

Definition at line 1114 of file SGObject.cpp.

virtual const char* get_name ( ) const
virtual

returns the name of the likelihood model

Returns
name StudentsTLikelihood

Implements CSGObject.

Definition at line 57 of file StudentsTLikelihood.h.

SGVector< float64_t > get_predictive_log_probabilities ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab = NULL 
)
virtualinherited

returns the logarithm of the predictive density of \(y_*\):

\[ log(p(y_*|X,y,x_*)) = log\left(\int p(y_*|f_*) p(f_*|X,y,x_*) df_*\right) \]

which approximately equals to

\[ log\left(\int p(y_*|f_*) \mathcal{N}(f_*|\mu,\sigma^2) df_*\right) \]

where normal distribution \(\mathcal{N}(\mu,\sigma^2)\) is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\).

NOTE: if lab equals to NULL, then each \(y_*\) equals to one.

Parameters
muposterior mean of a Gaussian distribution \(\mathcal{N}(\mu,\sigma^2)\), which is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\)
s2posterior variance of a Gaussian distribution \(\mathcal{N}(\mu,\sigma^2)\), which is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\)
lablabels \(y_*\)
Returns
\(log(p(y_*|X, y, x*))\) for each label \(y_*\)

Definition at line 25 of file LikelihoodModel.cpp.

SGVector< float64_t > get_predictive_means ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab = NULL 
) const
virtual

returns mean of the predictive marginal \(p(y_*|X,y,x_*)\).

NOTE: if lab equals to NULL, then each \(y_*\) equals to one.

Parameters
muposterior mean of a Gaussian distribution \(\mathcal{N}(\mu,\sigma^2)\), which is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\)
s2posterior variance of a Gaussian distribution \(\mathcal{N}(\mu,\sigma^2)\), which is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\)
lablabels \(y_*\)
Returns
final means evaluated by likelihood function

Implements CLikelihoodModel.

Definition at line 284 of file StudentsTLikelihood.cpp.

SGVector< float64_t > get_predictive_variances ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab = NULL 
) const
virtual

returns variance of the predictive marginal \(p(y_*|X,y,x_*)\).

NOTE: if lab equals to NULL, then each \(y_*\) equals to one.

Parameters
muposterior mean of a Gaussian distribution \(\mathcal{N}(\mu,\sigma^2)\), which is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\)
s2posterior variance of a Gaussian distribution \(\mathcal{N}(\mu,\sigma^2)\), which is an approximation to the posterior marginal \(p(f_*|X,y,x_*)\)
lablabels \(y_*\)
Returns
final variances evaluated by likelihood function

Implements CLikelihoodModel.

Definition at line 290 of file StudentsTLikelihood.cpp.

SGVector< float64_t > get_second_derivative ( const CLabels lab,
SGVector< float64_t func,
const TParameter param 
) const
virtual

get derivative of the first derivative of log likelihood with respect to function location, i.e. \(\frac{\partial log(P(y|f))}{\partial f}\) with respect to given parameter

Parameters
lablabels used
funcfunction location
paramparameter
Returns
derivative

Reimplemented from CLikelihoodModel.

Definition at line 447 of file StudentsTLikelihood.cpp.

float64_t get_second_moment ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab,
index_t  i 
) const
virtual

returns the second moment of a given (unnormalized) probability distribution \(q(f_i) = Z_i^-1 p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\), where \( Z_i=\int p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\).

This method is useful for EP local likelihood approximation.

Parameters
mumean of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
s2variance of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
lablabels \(y_i\)
iindex i
Returns
the second moment of \(q(f_i)\)

Implements CLikelihoodModel.

Definition at line 654 of file StudentsTLikelihood.cpp.

SGVector< float64_t > get_second_moments ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab 
) const
virtualinherited

returns the second moment of a given (unnormalized) probability distribution \(q(f_i) = Z_i^-1 p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\) for each \(f_i\), where \( Z_i=\int p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\).

Wrapper method which calls get_second_moment multiple times.

Parameters
mumean of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
s2variance of the \(\mathcal{N}(f_i|\mu,\sigma^2)\)
lablabels \(y_i\)
Returns
the second moment of \(q(f_i)\) for each \(f_i\)

Definition at line 69 of file LikelihoodModel.cpp.

float64_t get_sigma ( )

returns the scale paramter

Returns
scale parameter

Definition at line 63 of file StudentsTLikelihood.h.

SGVector< float64_t > get_third_derivative ( const CLabels lab,
SGVector< float64_t func,
const TParameter param 
) const
virtual

get derivative of the second derivative of log likelihood with respect to function location, i.e. \(\frac{\partial^{2} log(P(y|f))}{\partial f^{2}}\) with respect to given parameter

Parameters
lablabels used
funcfunction location
paramparameter
Returns
derivative

Reimplemented from CLikelihoodModel.

Definition at line 496 of file StudentsTLikelihood.cpp.

virtual SGVector<float64_t> get_variational_expection ( )
virtualinherited

returns the expection of the logarithm of a given probability distribution wrt the variational distribution.

Returns
expection

Reimplemented in CLogitPiecewiseBoundLikelihood.

Definition at line 333 of file LikelihoodModel.h.

virtual SGVector<float64_t> get_variational_first_derivative ( const TParameter param) const
virtualinherited

get derivative of the variational expection of log likelihood with respect to given parameter

Parameters
paramparameter
Returns
derivative

Reimplemented in CLogitPiecewiseBoundLikelihood.

Definition at line 346 of file LikelihoodModel.h.

bool is_generic ( EPrimitiveType *  generic) const
virtualinherited

If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.

Parameters
genericset to the type of the generic if returning TRUE
Returns
TRUE if a class template.

Definition at line 243 of file SGObject.cpp.

DynArray< TParameter * > * load_all_file_parameters ( int32_t  file_version,
int32_t  current_version,
CSerializableFile file,
const char *  prefix = "" 
)
inherited

maps all parameters of this instance to the provided file version and loads all parameter data from the file into an array, which is sorted (basically calls load_file_parameter(...) for all parameters and puts all results into a sorted array)

Parameters
file_versionparameter version of the file
current_versionversion from which mapping begins (you want to use Version::get_version_parameter() for this in most cases)
filefile to load from
prefixprefix for members
Returns
(sorted) array of created TParameter instances with file data

Definition at line 648 of file SGObject.cpp.

DynArray< TParameter * > * load_file_parameters ( const SGParamInfo param_info,
int32_t  file_version,
CSerializableFile file,
const char *  prefix = "" 
)
inherited

loads some specified parameters from a file with a specified version The provided parameter info has a version which is recursively mapped until the file parameter version is reached. Note that there may be possibly multiple parameters in the mapping, therefore, a set of TParameter instances is returned

Parameters
param_infoinformation of parameter
file_versionparameter version of the file, must be <= provided parameter version
filefile to load from
prefixprefix for members
Returns
new array with TParameter instances with the attached data

Definition at line 489 of file SGObject.cpp.

bool load_serializable ( CSerializableFile file,
const char *  prefix = "",
int32_t  param_version = Version::get_version_parameter() 
)
virtualinherited

Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!

Parameters
filewhere to load from
prefixprefix for members
param_version(optional) a parameter version different to (this is mainly for testing, better do not use)
Returns
TRUE if done, otherwise FALSE

Definition at line 320 of file SGObject.cpp.

void load_serializable_post ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CKernel, CWeightedDegreePositionStringKernel, CList, CAlphabet, CLinearHMM, CGaussianKernel, CInverseMultiQuadricKernel, CCircularKernel, and CExponentialKernel.

Definition at line 1004 of file SGObject.cpp.

void load_serializable_pre ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 999 of file SGObject.cpp.

void map_parameters ( DynArray< TParameter * > *  param_base,
int32_t &  base_version,
DynArray< const SGParamInfo * > *  target_param_infos 
)
inherited

Takes a set of TParameter instances (base) with a certain version and a set of target parameter infos and recursively maps the base level wise to the current version using CSGObject::migrate(...). The base is replaced. After this call, the base version containing parameters should be of same version/type as the initial target parameter infos. Note for this to work, the migrate methods and all the internal parameter mappings have to match

Parameters
param_baseset of TParameter instances that are mapped to the provided target parameter infos
base_versionversion of the parameter base
target_param_infosset of SGParamInfo instances that specify the target parameter base

Definition at line 686 of file SGObject.cpp.

TParameter * migrate ( DynArray< TParameter * > *  param_base,
const SGParamInfo target 
)
protectedvirtualinherited

creates a new TParameter instance, which contains migrated data from the version that is provided. The provided parameter data base is used for migration, this base is a collection of all parameter data of the previous version. Migration is done FROM the data in param_base TO the provided param info Migration is always one version step. Method has to be implemented in subclasses, if no match is found, base method has to be called.

If there is an element in the param_base which equals the target, a copy of the element is returned. This represents the case when nothing has changed and therefore, the migrate method is not overloaded in a subclass

Parameters
param_baseset of TParameter instances to use for migration
targetparameter info for the resulting TParameter
Returns
a new TParameter instance with migrated data from the base of the type which is specified by the target parameter

Definition at line 893 of file SGObject.cpp.

CStudentsTLikelihood * obtain_from_generic ( CLikelihoodModel likelihood)
static

helper method used to specialize a base class instance

Parameters
likelihoodlikelihood model
Returns
casted CStudentsTLikelihood object

Definition at line 272 of file StudentsTLikelihood.cpp.

void one_to_one_migration_prepare ( DynArray< TParameter * > *  param_base,
const SGParamInfo target,
TParameter *&  replacement,
TParameter *&  to_migrate,
char *  old_name = NULL 
)
protectedvirtualinherited

This method prepares everything for a one-to-one parameter migration. One to one here means that only ONE element of the parameter base is needed for the migration (the one with the same name as the target). Data is allocated for the target (in the type as provided in the target SGParamInfo), and a corresponding new TParameter instance is written to replacement. The to_migrate pointer points to the single needed TParameter instance needed for migration. If a name change happened, the old name may be specified by old_name. In addition, the m_delete_data flag of to_migrate is set to true. So if you want to migrate data, the only thing to do after this call is converting the data in the m_parameter fields. If unsure how to use - have a look into an example for this. (base_migration_type_conversion.cpp for example)

Parameters
param_baseset of TParameter instances to use for migration
targetparameter info for the resulting TParameter
replacement(used as output) here the TParameter instance which is returned by migration is created into
to_migratethe only source that is used for migration
old_namewith this parameter, a name change may be specified

Definition at line 833 of file SGObject.cpp.

bool parameter_hash_changed ( )
virtualinherited
Returns
whether parameter combination has changed since last update

Definition at line 209 of file SGObject.cpp.

void print_modsel_params ( )
inherited

prints all parameter registered for model selection and their type

Definition at line 1053 of file SGObject.cpp.

void print_serializable ( const char *  prefix = "")
virtualinherited

prints registered parameters out

Parameters
prefixprefix for members

Definition at line 255 of file SGObject.cpp.

bool save_serializable ( CSerializableFile file,
const char *  prefix = "",
int32_t  param_version = Version::get_version_parameter() 
)
virtualinherited

Save this object to file.

Parameters
filewhere to save the object; will be closed during returning if PREFIX is an empty string.
prefixprefix for members
param_version(optional) a parameter version different to (this is mainly for testing, better do not use)
Returns
TRUE if done, otherwise FALSE

Definition at line 261 of file SGObject.cpp.

void save_serializable_post ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CKernel.

Definition at line 1014 of file SGObject.cpp.

void save_serializable_pre ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CKernel, CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 1009 of file SGObject.cpp.

void set_degrees_freedom ( float64_t  df)

set degrees of freedom

Parameters
dfdegrees of freedom

Definition at line 85 of file StudentsTLikelihood.h.

virtual void set_distribution ( SGVector< float64_t mu,
SGVector< float64_t s2,
const CLabels lab 
)
virtualinherited

set the variational distribution given data and parameters

Parameters
mumean of the variational distribution
s2variance of the variational distribution
lablabels/data used

Reimplemented in CLogitPiecewiseBoundLikelihood.

Definition at line 323 of file LikelihoodModel.h.

void set_generic< complex128_t > ( )
inherited

set generic type to T

Definition at line 38 of file SGObject.cpp.

void set_global_io ( SGIO io)
inherited

set the io object

Parameters
ioio object to use

Definition at line 176 of file SGObject.cpp.

void set_global_parallel ( Parallel parallel)
inherited

set the parallel object

Parameters
parallelparallel object to use

Definition at line 189 of file SGObject.cpp.

void set_global_version ( Version version)
inherited

set the version object

Parameters
versionversion object to use

Definition at line 230 of file SGObject.cpp.

void set_sigma ( float64_t  sigma)

sets the scale parameter

Parameters
sigmascale parameter

Definition at line 69 of file StudentsTLikelihood.h.

CSGObject * shallow_copy ( ) const
virtualinherited

A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.

Reimplemented in CGaussianKernel.

Definition at line 140 of file SGObject.cpp.

virtual bool supports_binary ( ) const
virtualinherited

return whether likelihood function supports binary classification

Returns
false

Reimplemented in CProbitLikelihood, and CLogitLikelihood.

Definition at line 308 of file LikelihoodModel.h.

virtual bool supports_multiclass ( ) const
virtualinherited

return whether likelihood function supports multiclass classification

Returns
false

Reimplemented in CSoftMaxLikelihood.

Definition at line 314 of file LikelihoodModel.h.

virtual bool supports_regression ( ) const
virtual

return whether Student's likelihood function supports regression

Returns
true

Reimplemented from CLikelihoodModel.

Definition at line 260 of file StudentsTLikelihood.h.

void unset_generic ( )
inherited

unset generic type

this has to be called in classes specializing a template class

Definition at line 250 of file SGObject.cpp.

void update_parameter_hash ( )
virtualinherited

Updates the hash of current parameter combination

Definition at line 196 of file SGObject.cpp.

Member Data Documentation

SGIO* io
inherited

io

Definition at line 461 of file SGObject.h.

Parameter* m_gradient_parameters
inherited

parameters wrt which we can compute gradients

Definition at line 476 of file SGObject.h.

uint32_t m_hash
inherited

Hash of parameter values

Definition at line 482 of file SGObject.h.

Parameter* m_model_selection_parameters
inherited

model selection parameters

Definition at line 473 of file SGObject.h.

ParameterMap* m_parameter_map
inherited

map for different parameter versions

Definition at line 479 of file SGObject.h.

Parameter* m_parameters
inherited

parameters

Definition at line 470 of file SGObject.h.

Parallel* parallel
inherited

parallel

Definition at line 464 of file SGObject.h.

Version* version
inherited

version

Definition at line 467 of file SGObject.h.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation