22     m_min_label(0), m_num_classes(0), m_dim(0), m_means(), m_variances(),
 
   23     m_label_prob(), m_rates()
 
   30     m_min_label(0), m_num_classes(0), m_dim(0), m_means(),
 
   31     m_variances(), m_label_prob(), m_rates()
 
   37         SG_ERROR(
"Specified features are not of type CDotFeatures\n")
 
   56         SG_ERROR(
"Specified features are not of type CDotFeatures\n")
 
   69                 SG_ERROR(
"Specified features are not of type CDotFeatures\n")
 
   80     int32_t min_label = train_labels.vector[0];
 
   81     int32_t max_label = train_labels.vector[0];
 
   85     for (i=1; i<train_labels.vlen; i++)
 
   87         min_label = 
CMath::min(min_label, train_labels.vector[i]);
 
   88         max_label = 
CMath::max(max_label, train_labels.vector[i]);
 
   92     for (i=0; i<train_labels.vlen; i++)
 
   93         train_labels.vector[i]-= min_label;
 
  115     int32_t max_progress = 2 * train_labels.vlen + 2 * 
m_num_classes;
 
  118     int32_t progress = 0;
 
  122     for (i=0; i<train_labels.vlen; i++)
 
  125         for (j=0; j<
m_dim; j++)
 
  128         m_label_prob.vector[train_labels.vector[i]]+=1.0;
 
  137         for (j=0; j<
m_dim; j++)
 
  138             m_means(j, i) /= m_label_prob.vector[i];
 
  145     for (i=0; i<train_labels.vlen; i++)
 
  148         for (j=0; j<
m_dim; j++)
 
  161         for (j=0; j<
m_dim; j++)
 
  162             m_variances(j, i) /= m_label_prob.vector[i] > 1 ? m_label_prob.vector[i]-1 : 1;
 
  190     for (
int i = 0; i < num_vectors; i++)
 
  220         for (k=0; k<
m_dim; k++)
 
  227     int32_t max_label_idx = 0;
 
virtual ELabelType get_label_type() const =0
SGVector< float64_t > m_label_prob
a priori probabilities of labels 
experimental abstract native multiclass machine class 
The class Labels models labels, i.e. class assignments of objects. 
virtual int32_t get_num_labels() const =0
multi-class labels 0,1,... 
virtual CMulticlassLabels * apply_multiclass(CFeatures *data=NULL)
virtual ~CGaussianNaiveBayes()
virtual int32_t get_num_vectors() const =0
Features that support dot products among other operations. 
SGMatrix< float64_t > m_variances
variances for normal distributions of features 
SGVector< float64_t > m_rates
label rates 
virtual int32_t get_dim_feature_space() const =0
bool set_label(int32_t idx, float64_t label)
Multiclass Labels for multi-class classification. 
int32_t m_num_classes
number of different classes (labels) 
int32_t m_min_label
minimal label 
virtual void set_features(CFeatures *features)
int32_t m_dim
dimensionality of feature space 
virtual bool train_machine(CFeatures *data=NULL)
all of classes and functions are contained in the shogun namespace 
SGMatrix< float64_t > m_means
means for normal distributions of features 
The class Features is the base class of all feature objects. 
static float64_t log(float64_t v)
SGVector< float64_t > get_computed_dot_feature_vector(int32_t num)
static float32_t sqrt(float32_t x)
virtual CFeatures * get_features()
bool has_property(EFeatureProperty p) const 
virtual float64_t apply_one(int32_t idx)
CDotFeatures * m_features
features for training or classifying 
virtual void set_labels(CLabels *lab)