11 #ifndef GAUSSIANNAIVEBAYES_H_
12 #define GAUSSIANNAIVEBAYES_H_
84 virtual const char*
get_name()
const {
return "GaussianNaiveBayes"; };
SGVector< float64_t > m_label_prob
a priori probabilities of labels
experimental abstract native multiclass machine class
The class Labels models labels, i.e. class assignments of objects.
virtual CMulticlassLabels * apply_multiclass(CFeatures *data=NULL)
virtual ~CGaussianNaiveBayes()
Features that support dot products among other operations.
SGMatrix< float64_t > m_variances
variances for normal distributions of features
SGVector< float64_t > m_rates
label rates
Multiclass Labels for multi-class classification.
int32_t m_num_classes
number of different classes (labels)
virtual EMachineType get_classifier_type()
#define MACHINE_PROBLEM_TYPE(PT)
int32_t m_min_label
minimal label
virtual void set_features(CFeatures *features)
int32_t m_dim
dimensionality of feature space
virtual const char * get_name() const
virtual bool train_machine(CFeatures *data=NULL)
Class GaussianNaiveBayes, a Gaussian Naive Bayes classifier.
all of classes and functions are contained in the shogun namespace
SGMatrix< float64_t > m_means
means for normal distributions of features
The class Features is the base class of all feature objects.
virtual CFeatures * get_features()
virtual float64_t apply_one(int32_t idx)
CDotFeatures * m_features
features for training or classifying