33 #ifndef CSPARSEINFERENCEBASE_H
34 #define CSPARSEINFERENCEBASE_H
103 virtual const char*
get_name()
const {
return "SparseBaseInferenceMethod"; }
111 REQUIRE(feat,
"Input inducing features must be not empty\n");
113 REQUIRE(lat_type,
"Inducing features (%s) must be"
114 " DotFeatures or one of its subclasses\n", feat->
get_name());
127 SG_REF(inducing_features);
128 return inducing_features;
virtual const char * get_name() const =0
virtual SGVector< float64_t > get_derivative_wrt_mean(const TParameter *param)=0
virtual SGMatrix< float64_t > get_posterior_covariance()=0
virtual void check_members() const
virtual SGVector< float64_t > get_derivative_wrt_inducing_features(const TParameter *param)=0
SGVector< float64_t > m_ktrtr_diag
The Inference Method base class.
virtual SGVector< float64_t > get_derivative_wrt_inducing_noise(const TParameter *param)=0
virtual void convert_features()
virtual void set_inducing_features(CFeatures *feat)
virtual float64_t get_inducing_noise()
The class Labels models labels, i.e. class assignments of objects.
virtual EInferenceType get_inference_type() const
SGMatrix< float64_t > m_kuu
virtual SGMatrix< float64_t > get_cholesky()
virtual void update_train_kernel()
SGMatrix< float64_t > m_ktru
An abstract class of the mean function.
Features that support dot products among other operations.
SGMatrix< float64_t > m_inducing_features
SGVector< float64_t > m_mu
virtual SGVector< float64_t > get_derivative_wrt_likelihood_model(const TParameter *param)=0
virtual SGVector< float64_t > get_derivative_wrt_inference_method(const TParameter *param)=0
virtual void check_features()
virtual SGVector< float64_t > get_posterior_mean()=0
virtual const char * get_name() const
virtual void set_inducing_noise(float64_t noise)
SGMatrix< float64_t > m_Sigma
all of classes and functions are contained in the shogun namespace
virtual CFeatures * get_inducing_features()
The class Features is the base class of all feature objects.
float64_t m_log_ind_noise
SGMatrix< float64_t > get_computed_dot_feature_matrix()
The Fully Independent Conditional Training inference base class.
virtual ~CSparseInferenceBase()
virtual SGVector< float64_t > get_derivative_wrt_kernel(const TParameter *param)=0
The Likelihood model base class.
virtual SGVector< float64_t > get_alpha()