34 #ifndef __AUTOENCODER_H__
35 #define __AUTOENCODER_H__
43 template <
class T>
class CDenseFeatures;
44 class CNeuralConvolutionalLayer;
117 CAutoencoder(int32_t input_width, int32_t input_height, int32_t input_num_channels,
166 virtual const char*
get_name()
const {
return "Autoencoder"; }
Represents a single layer neural autoencoder.
virtual const char * get_name() const
virtual CDenseFeatures< float64_t > * reconstruct(CDenseFeatures< float64_t > *data)
EAENoiseType m_noise_type
A generic multi-layer neural network.
virtual void set_contraction_coefficient(float64_t coeff)
Base class for neural network layers.
virtual float64_t compute_error(SGMatrix< float64_t > targets)
float64_t m_noise_parameter
float64_t m_contraction_coefficient
EAENoiseType
Determines the noise type for denoising autoencoders.
virtual bool train(CFeatures *data)
EAENoiseType get_noise_type()
float64_t get_noise_parameter()
virtual CDenseFeatures< float64_t > * transform(CDenseFeatures< float64_t > *data)
CNeuralLayer * get_layer(int32_t i)
all of classes and functions are contained in the shogun namespace
Main component in convolutional neural networks
The class Features is the base class of all feature objects.
void set_noise_type(EAENoiseType noise_type)
float64_t contraction_coefficient
void set_noise_parameter(float64_t noise_parameter)