34 #ifndef __NEURALNETWORK_H__ 
   35 #define __NEURALNETWORK_H__ 
   44 template<
class T> 
class CDenseFeatures;
 
   45 class CDynamicObjectArray;
 
  137     virtual void connect(int32_t i, int32_t j);
 
  145     virtual void disconnect(int32_t i, int32_t j);
 
  232     virtual const char* 
get_name()
 const { 
return "NeuralNetwork";}
 
  560     static float64_t lbfgs_evaluate(
void *userdata,
 
  567     static int lbfgs_progress(
void *instance,
 
void set_gd_learning_rate(float64_t gd_learning_rate)
 
SGVector< int32_t > m_index_offsets
 
virtual CBinaryLabels * apply_binary(CFeatures *data)
 
void set_gd_momentum(float64_t gd_momentum)
 
Real Labels are real-valued labels. 
 
virtual void initialize_neural_network(float64_t sigma=0.01f)
 
int32_t get_gd_mini_batch_size() const 
 
float64_t get_l2_coefficient() const 
 
int32_t get_num_parameters()
 
virtual const char * get_name() const 
 
float64_t get_gd_learning_rate() const 
 
void set_max_norm(float64_t max_norm)
 
void set_gd_mini_batch_size(int32_t gd_mini_batch_size)
 
The class Labels models labels, i.e. class assignments of objects. 
 
float64_t m_l1_coefficient
 
SGVector< float64_t > get_parameters()
 
float64_t m_gd_error_damping_coeff
 
virtual bool train_machine(CFeatures *data=NULL)
 
SGVector< float64_t > m_params
 
void set_dropout_hidden(float64_t dropout_hidden)
 
A generic multi-layer neural network. 
 
float64_t get_dropout_input() const 
 
float64_t get_gd_learning_rate_decay() const 
 
SGMatrix< bool > m_adj_matrix
 
SGMatrix< float64_t > features_to_matrix(CFeatures *features)
 
virtual void disconnect(int32_t i, int32_t j)
 
Base class for neural network layers. 
 
virtual bool train_gradient_descent(SGMatrix< float64_t > inputs, SGMatrix< float64_t > targets)
 
virtual void quick_connect()
 
float64_t get_gd_error_damping_coeff() const 
 
void set_max_num_epochs(int32_t max_num_epochs)
 
virtual float64_t compute_error(SGMatrix< float64_t > inputs, SGMatrix< float64_t > targets)
 
A generic learning machine interface. 
 
float64_t m_dropout_hidden
 
void set_epsilon(float64_t epsilon)
 
float64_t get_gd_momentum() const 
 
SGVector< bool > m_param_regularizable
 
float64_t m_dropout_input
 
virtual CMulticlassLabels * apply_multiclass(CFeatures *data)
 
Multiclass Labels for multi-class classification. 
 
float64_t m_l2_coefficient
 
int32_t get_max_num_epochs() const 
 
CDynamicObjectArray * m_layers
 
virtual void connect(int32_t i, int32_t j)
 
virtual void set_batch_size(int32_t batch_size)
 
virtual void disconnect_all()
 
virtual ~CNeuralNetwork()
 
int32_t m_total_num_parameters
 
virtual CRegressionLabels * apply_regression(CFeatures *data)
 
ENNOptimizationMethod get_optimization_method() const 
 
void set_gd_error_damping_coeff(float64_t gd_error_damping_coeff)
 
void set_l2_coefficient(float64_t l2_coefficient)
 
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
 
ENNOptimizationMethod m_optimization_method
 
float64_t m_gd_learning_rate_decay
 
CDynamicObjectArray * get_layers()
 
float64_t get_max_norm() const 
 
int32_t m_gd_mini_batch_size
 
virtual float64_t check_gradients(float64_t approx_epsilon=1.0e-3, float64_t s=1.0e-9)
 
CNeuralLayer * get_layer(int32_t i)
 
virtual bool is_label_valid(CLabels *lab) const 
 
virtual CDenseFeatures< float64_t > * transform(CDenseFeatures< float64_t > *data)
 
float64_t get_dropout_hidden() const 
 
all of classes and functions are contained in the shogun namespace 
 
virtual void set_labels(CLabels *lab)
 
void set_l1_coefficient(float64_t l1_coefficient)
 
virtual bool train_lbfgs(SGMatrix< float64_t > inputs, SGMatrix< float64_t > targets)
 
virtual EMachineType get_classifier_type()
 
The class Features is the base class of all feature objects. 
 
SGMatrix< float64_t > labels_to_matrix(CLabels *labs)
 
virtual SGMatrix< float64_t > forward_propagate(CFeatures *data, int32_t j=-1)
 
float64_t get_l1_coefficient() const 
 
int32_t get_num_outputs()
 
virtual EProblemType get_machine_problem_type() const 
 
void set_gd_learning_rate_decay(float64_t gd_learning_rate_decay)
 
Binary Labels for binary classification. 
 
virtual void set_layers(CDynamicObjectArray *layers)
 
void set_optimization_method(ENNOptimizationMethod optimization_method)
 
SGVector< float64_t > * get_layer_parameters(int32_t i)
 
float64_t m_gd_learning_rate
 
float64_t get_epsilon() const 
 
virtual float64_t compute_gradients(SGMatrix< float64_t > inputs, SGMatrix< float64_t > targets, SGVector< float64_t > gradients)
 
void set_dropout_input(float64_t dropout_input)