34 #ifndef __DEEPBELIEFNETWORK_H__
35 #define __DEEPBELIEFNETWORK_H__
46 template <
class T>
class SGVector;
47 template <
class T>
class SGMatrix;
48 template <
class T>
class SGMatrixList;
49 template <
class T>
class CDenseFeatures;
50 template <
class T>
class CDynamicArray;
51 class CDynamicObjectArray;
175 int32_t num_gibbs_steps=1, int32_t batch_size=1);
213 virtual const char*
get_name()
const {
return "DeepBeliefNetwork"; }
219 bool sample_states =
true);
224 bool sample_states =
true);
virtual void reset_chain()
A Restricted Boltzmann Machine.
virtual void wake_sleep(SGMatrix< float64_t > data, CRBM *top_rbm, SGMatrixList< float64_t > sleep_states, SGMatrixList< float64_t > wake_states, SGMatrixList< float64_t > psleep_states, SGMatrixList< float64_t > pwake_states, SGVector< float64_t > gen_params, SGVector< float64_t > rec_params, SGVector< float64_t > gen_gradients, SGVector< float64_t > rec_gradients)
virtual void train(CDenseFeatures< float64_t > *features)
virtual CDenseFeatures< float64_t > * transform(CDenseFeatures< float64_t > *features, int32_t i=-1)
float64_t gd_learning_rate_decay
SGMatrixList< float64_t > m_states
SGVector< int32_t > pt_gd_mini_batch_size
SGVector< int32_t > m_bias_index_offsets
float64_t gd_learning_rate
virtual const char * get_name() const
CDynamicArray< int32_t > * m_layer_sizes
A generic multi-layer neural network.
virtual void pre_train(CDenseFeatures< float64_t > *features)
SGVector< float64_t > pt_gd_momentum
virtual void down_step(int32_t index, SGVector< float64_t > params, SGMatrix< float64_t > input, SGMatrix< float64_t > result, bool sample_states=true)
Base class for neural network layers.
SGVector< int32_t > pt_monitoring_interval
ERBMVisibleUnitType m_visible_units_type
SGVector< int32_t > m_weights_index_offsets
int32_t monitoring_interval
virtual void up_step(int32_t index, SGVector< float64_t > params, SGMatrix< float64_t > input, SGMatrix< float64_t > result, bool sample_states=true)
SGVector< float64_t > m_params
Class SGObject is the base class of all shogun objects.
SGVector< float64_t > pt_gd_learning_rate
virtual void add_hidden_layer(int32_t num_units)
virtual void set_batch_size(int32_t batch_size)
SGVector< float64_t > pt_gd_learning_rate_decay
SGVector< bool > pt_cd_persistent
SGVector< float64_t > pt_l1_coefficient
SGVector< int32_t > pt_monitoring_method
SGVector< float64_t > pt_l2_coefficient
all of classes and functions are contained in the shogun namespace
virtual CNeuralNetwork * convert_to_neural_network(CNeuralLayer *output_layer=NULL, float64_t sigma=0.01)
virtual ~CDeepBeliefNetwork()
virtual CDenseFeatures< float64_t > * sample(int32_t num_gibbs_steps=1, int32_t batch_size=1)
SGVector< bool > pt_cd_sample_visible
virtual SGMatrix< float64_t > get_weights(int32_t index, SGVector< float64_t > p=SGVector< float64_t >())
virtual void initialize_neural_network(float64_t sigma=0.01)
int32_t gd_mini_batch_size
SGVector< int32_t > pt_max_num_epochs
virtual SGVector< float64_t > get_biases(int32_t index, SGVector< float64_t > p=SGVector< float64_t >())
SGVector< int32_t > pt_cd_num_steps