92 float64_t min_cov=1e-9, int32_t max_em_iter=1000,
131 int32_t num_param, int32_t num_example);
197 virtual std::vector<CGaussian*>
get_comp();
203 virtual void set_comp(std::vector<CGaussian*> components);
219 virtual const char*
get_name()
const {
return "GMM"; }
231 void register_params();
242 void partial_em(int32_t comp1, int32_t comp2, int32_t comp3,
virtual float64_t get_likelihood_example(int32_t num_example)
virtual int32_t get_num_model_parameters()
SGVector< float64_t > m_coefficients
float64_t train_smem(int32_t max_iter=100, int32_t max_cand=5, float64_t min_cov=1e-9, int32_t max_em_iter=1000, float64_t min_change=1e-9)
std::vector< CGaussian * > m_components
virtual float64_t get_log_derivative(int32_t num_param, int32_t num_example)
void max_likelihood(SGMatrix< float64_t > alpha, float64_t min_cov)
virtual void set_nth_mean(SGVector< float64_t > mean, int32_t num)
virtual SGVector< float64_t > get_coef()
Base class Distribution from which all methods implementing a distribution are derived.
SGVector< float64_t > sample()
float64_t train_em(float64_t min_cov=1e-9, int32_t max_iter=1000, float64_t min_change=1e-9)
virtual SGVector< float64_t > get_nth_mean(int32_t num)
CDistribution * get_component(index_t index) const
virtual std::vector< CGaussian * > get_comp()
virtual const char * get_name() const
virtual void set_coef(const SGVector< float64_t > coefficients)
virtual void set_nth_cov(SGMatrix< float64_t > cov, int32_t num)
SGVector< float64_t > cluster(SGVector< float64_t > point)
all of classes and functions are contained in the shogun namespace
virtual float64_t get_log_likelihood_example(int32_t num_example)
virtual float64_t get_log_model_parameter(int32_t num_param)
The class Features is the base class of all feature objects.
virtual SGMatrix< float64_t > get_nth_cov(int32_t num)
virtual bool train(CFeatures *data=NULL)
virtual void set_comp(std::vector< CGaussian * > components)
Gaussian Mixture Model interface.
index_t get_num_components() const