virtual void update_train_kernel()
virtual SGMatrix< float64_t > get_cholesky()=0
The class Labels models labels, i.e. class assignments of objects.
virtual EInferenceType get_inference_type() const
virtual void update_alpha()=0
virtual bool supports_binary() const
virtual void update_chol()=0
static void * get_derivative_helper(void *p)
virtual CKernel * get_kernel()
virtual void set_scale(float64_t scale)
virtual CLabels * get_labels()
virtual CFeatures * get_features()
SGMatrix< float64_t > m_E
An abstract class of the mean function.
virtual void set_labels(CLabels *lab)
SGMatrix< float64_t > m_ktrtr
virtual SGVector< float64_t > get_derivative_wrt_mean(const TParameter *param)=0
virtual SGMatrix< float64_t > get_posterior_covariance()=0
virtual void update_deriv()=0
virtual SGMatrix< float64_t > get_multiclass_E()
Class SGObject is the base class of all shogun objects.
virtual float64_t get_scale() const
virtual bool supports_regression() const
virtual SGVector< float64_t > get_diagonal_vector()=0
virtual void compute_gradient()
virtual CMap< TParameter *, SGVector< float64_t > > * get_gradient(CMap< TParameter *, CSGObject * > *parameters)
An abstract class that describes a differentiable function used for GradientEvaluation.
virtual SGVector< float64_t > get_alpha()=0
virtual void set_model(CLikelihoodModel *mod)
virtual void set_kernel(CKernel *kern)
virtual SGVector< float64_t > get_derivative_wrt_inference_method(const TParameter *param)=0
SGMatrix< float64_t > m_L
virtual SGVector< float64_t > get_posterior_mean()=0
virtual float64_t get_negative_log_marginal_likelihood()=0
virtual SGVector< float64_t > get_value()
CLikelihoodModel * get_model()
virtual void register_minimizer(Minimizer *minimizer)
virtual void set_features(CFeatures *feat)
virtual SGVector< float64_t > get_derivative_wrt_kernel(const TParameter *param)=0
all of classes and functions are contained in the shogun namespace
The Inference Method base class.
float64_t get_marginal_likelihood_estimate(int32_t num_importance_samples=1, float64_t ridge_size=1e-15)
virtual CMeanFunction * get_mean()
The class Features is the base class of all feature objects.
void scale(Matrix A, Matrix B, typename Matrix::Scalar alpha)
virtual CMap< TParameter *, SGVector< float64_t > > * get_negative_log_marginal_likelihood_derivatives(CMap< TParameter *, CSGObject * > *parameters)
The minimizer base class.
virtual bool supports_multiclass() const
CLikelihoodModel * m_model
virtual void set_mean(CMeanFunction *m)
The Likelihood model base class.
SGVector< float64_t > m_alpha
the class CMap, a map based on the hash-table. w: http://en.wikipedia.org/wiki/Hash_table ...
virtual void check_members() const
virtual SGVector< float64_t > get_derivative_wrt_likelihood_model(const TParameter *param)=0