49 using namespace Eigen;
54 CKLCovarianceInferenceMethod::CKLCovarianceInferenceMethod() :
CKLInference()
66 void CKLCovarianceInferenceMethod::init()
69 "V is L'*V=diag(sW)*K",
72 "A is A=I-K*diag(sW)*inv(L)'*inv(L)*diag(sW)",
78 "Square root of noise matrix W",
81 "the gradient of the variational expection wrt sigma2",
84 "the gradient of the variational expection wrt mu",
107 eigen_result=eigen_alpha;
123 SG_SERROR(
"Provided inference is not of type CKLCovarianceInferenceMethod!\n")
148 eigen_W=(2.0*eigen_log_neg_lambda.array().exp()).matrix();
151 eigen_sW=eigen_W.array().sqrt().matrix();
158 eigen_V=eigen_L.triangularView<Upper>().adjoint().solve(eigen_sW.asDiagonal()*eigen_K*
CMath::exp(
m_log_scale*2.0));
162 eigen_s2=(eigen_K.diagonal().array()*
CMath::exp(
m_log_scale*2.0)-(eigen_V.array().pow(2).colwise().sum().transpose())).abs().matrix();
172 "The length of gradients (%d) should the same as the length of parameters (%d)\n",
197 MatrixXd eigen_U=eigen_L.triangularView<Upper>().adjoint().solve(
MatrixXd(eigen_sW.asDiagonal()));
200 eigen_A=MatrixXd::Identity(len, len)-eigen_V.transpose()*eigen_U;
214 eigen_dnlz_log_neg_lambda=(eigen_Sigma.array().pow(2)*2.0).matrix()*eigen_dv+eigen_s2;
215 eigen_dnlz_log_neg_lambda=eigen_dnlz_log_neg_lambda-(eigen_Sigma.array()*eigen_A.array()).rowwise().sum().matrix();
216 eigen_dnlz_log_neg_lambda=(eigen_log_neg_lambda.array().exp()*eigen_dnlz_log_neg_lambda.array()).matrix();
236 MatrixXd eigen_t=eigen_L.triangularView<Upper>().adjoint().solve(MatrixXd::Identity(eigen_L.rows(),eigen_L.cols()));
238 for(
index_t idx=0; idx<eigen_t.rows(); idx++)
239 trace +=(eigen_t.col(idx).array().pow(2)).sum();
242 float64_t result=-a+eigen_L.diagonal().array().log().sum();
243 result+=0.5*(-eigen_K.rows()+eigen_alpha.dot(eigen_mu-eigen_mean)+trace);
265 VectorXd z=AdK.diagonal()+(eigen_A.array()*AdK.array()).rowwise().sum().matrix()
266 -(eigen_A.transpose().array()*AdK.array()).colwise().sum().transpose().matrix();
269 return eigen_alpha.dot(eigen_dK*(eigen_alpha/2.0-eigen_df))-z.dot(eigen_dv);
285 MatrixXd::Identity(eigen_K.rows(), eigen_K.cols()));
287 MatrixXd tt=LL.triangularView<Upper>().adjoint().solve(MatrixXd::Identity(LL.rows(),LL.cols()));
289 for(
index_t idx=0; idx<tt.rows(); idx++)
290 trace+=(tt.col(idx).array().pow(2)).sum();
295 eigen_s2=(eigen_K.diagonal().array()*
CMath::exp(
m_log_scale*2.0)-(eigen_V.array().pow(2).colwise().sum().transpose())).abs().matrix();
302 nlml_def=-a+LL.diagonal().array().log().sum();
303 nlml_def+=0.5*(-eigen_K.rows()+trace);
305 if (nlml_new<=nlml_def)
static CKLCovarianceInferenceMethod * obtain_from_generic(CInference *inference)
virtual bool set_variational_distribution(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab)
virtual float64_t optimization()
virtual void update_approx_cov()
virtual SGVector< float64_t > get_variational_first_derivative(const TParameter *param) const =0
static SGMatrix< float64_t > get_choleksy(SGVector< float64_t > W, SGVector< float64_t > sW, SGMatrix< float64_t > kernel, float64_t scale)
virtual void update_deriv()
virtual void get_gradient_of_nlml_wrt_parameters(SGVector< float64_t > gradient)
The class Labels models labels, i.e. class assignments of objects.
virtual EInferenceType get_inference_type() const
virtual CVariationalGaussianLikelihood * get_variational_likelihood() const
virtual int32_t get_num_labels() const =0
virtual float64_t get_derivative_related_cov(SGMatrix< float64_t > dK)
The variational Gaussian Likelihood base class. The variational distribution is Gaussian.
static SGMatrix< float64_t > get_inverse(SGMatrix< float64_t > L, SGMatrix< float64_t > kernel, SGVector< float64_t > sW, SGMatrix< float64_t > V, float64_t scale)
TParameter * get_parameter(int32_t idx)
virtual SGVector< float64_t > get_mean_vector(const CFeatures *features) const =0
An abstract class of the mean function.
SGMatrix< float64_t > m_ktrtr
virtual ~CKLCovarianceInferenceMethod()
The KL approximation inference method class.
SGVector< float64_t > m_mu
static T sum(T *vec, int32_t len)
Return sum(vec)
SGMatrix< float64_t > m_L
virtual SGVector< float64_t > get_variational_expection()=0
Matrix< float64_t,-1,-1, 0,-1,-1 > MatrixXd
SGMatrix< float64_t > m_Sigma
The KL approximation inference method class.
SGVector< float64_t > m_s2
all of classes and functions are contained in the shogun namespace
The Inference Method base class.
The class Features is the base class of all feature objects.
static float64_t exp(float64_t x)
virtual void update_alpha()
static float64_t log(float64_t v)
virtual SGVector< float64_t > get_diagonal_vector()
virtual SGVector< float64_t > get_alpha()
CKLCovarianceInferenceMethod()
virtual bool precompute()
virtual float64_t get_negative_log_marginal_likelihood_helper()
virtual bool parameter_hash_changed()
The Likelihood model base class.
SGVector< float64_t > m_alpha
virtual void update_chol()