55     int32_t* indices_ = SG_MALLOC(int32_t, outputs.
vlen);
 
   56     for (int32_t i=0; i<outputs.
vlen; i++)
 
   58         outputs_[i] = outputs[i];
 
   63     for (int32_t i=0; i<n_outputs; i++)
 
   64         result[i] = indices_[i];
 
   78             SG_ERROR(
"%s::rescale_outputs(): Need to specify sigmoid parameters!\n", 
get_name());
 
   83             SG_ERROR(
"%s::rescale_outputs(): Unknown OVA probability heuristic type!\n", 
get_name());
 
  101         SG_ERROR(
"%s::rescale_heuris_norm(): size(outputs) = %d != m_num_classes = %d\n",
 
  107     for (int32_t i=0; i<outputs.
vlen; i++)
 
  116         SG_ERROR(
"%s::rescale_heuris_softmax(): size(outputs) = %d != m_num_classes = %d\n",
 
  120     for (int32_t i=0; i<outputs.
vlen; i++)
 
  121         outputs[i] = 
CMath::exp(-As[i]*outputs[i]-Bs[i]);
 
  125     for (int32_t i=0; i<outputs.
vlen; i++)
 
void rescale_heuris_norm(SGVector< float64_t > outputs)
 
CMulticlassLabels * m_orig_labels
original multiclass labels 
 
static int32_t arg_max(T *vec, int32_t inc, int32_t len, T *maxv_ptr=NULL)
 
virtual int32_t get_num_labels() const 
 
virtual SGVector< int32_t > train_prepare_next()
 
virtual const char * get_name() const 
 
CRejectionStrategy * m_rejection_strategy
rejection strategy 
 
virtual int32_t decide_label(SGVector< float64_t > outputs)
 
int32_t m_num_classes
number of classes in this problem 
 
Multiclass Labels for multi-class classification. 
 
int32_t m_train_iter
index of current iterations 
 
virtual void rescale_outputs(SGVector< float64_t > outputs)
 
void rescale_heuris_softmax(SGVector< float64_t > outputs, const SGVector< float64_t > As, const SGVector< float64_t > Bs)
 
virtual SGVector< index_t > decide_label_multiple_output(SGVector< float64_t > outputs, int32_t n_outputs)
 
static const int32_t REJECTION_LABEL
 
static T sum(T *vec, int32_t len)
Return sum(vec) 
 
all of classes and functions are contained in the shogun namespace 
 
virtual bool reject(SGVector< float64_t > outputs) const =0
 
CBinaryLabels * m_train_labels
labels used to train the submachines 
 
CMulticlassOneVsRestStrategy()
 
static float64_t exp(float64_t x)
 
Binary Labels for binary classification. 
 
class MulticlassStrategy used to construct generic multiclass classifiers with ensembles of binary cl...
 
virtual SGVector< int32_t > train_prepare_next()
 
static void qsort_backward_index(T1 *output, T2 *index, int32_t size)
 
EProbHeuristicType get_prob_heuris_type()