55 int32_t* indices_ = SG_MALLOC(int32_t, outputs.
vlen);
56 for (int32_t i=0; i<outputs.
vlen; i++)
58 outputs_[i] = outputs[i];
63 for (int32_t i=0; i<n_outputs; i++)
64 result[i] = indices_[i];
78 SG_ERROR(
"%s::rescale_outputs(): Need to specify sigmoid parameters!\n",
get_name());
83 SG_ERROR(
"%s::rescale_outputs(): Unknown OVA probability heuristic type!\n",
get_name());
101 SG_ERROR(
"%s::rescale_heuris_norm(): size(outputs) = %d != m_num_classes = %d\n",
107 for (int32_t i=0; i<outputs.
vlen; i++)
116 SG_ERROR(
"%s::rescale_heuris_softmax(): size(outputs) = %d != m_num_classes = %d\n",
120 for (int32_t i=0; i<outputs.
vlen; i++)
121 outputs[i] =
CMath::exp(-As[i]*outputs[i]-Bs[i]);
125 for (int32_t i=0; i<outputs.
vlen; i++)
void rescale_heuris_norm(SGVector< float64_t > outputs)
CMulticlassLabels * m_orig_labels
original multiclass labels
static int32_t arg_max(T *vec, int32_t inc, int32_t len, T *maxv_ptr=NULL)
virtual int32_t get_num_labels() const
virtual SGVector< int32_t > train_prepare_next()
virtual const char * get_name() const
CRejectionStrategy * m_rejection_strategy
rejection strategy
virtual int32_t decide_label(SGVector< float64_t > outputs)
int32_t m_num_classes
number of classes in this problem
Multiclass Labels for multi-class classification.
int32_t m_train_iter
index of current iterations
virtual void rescale_outputs(SGVector< float64_t > outputs)
void rescale_heuris_softmax(SGVector< float64_t > outputs, const SGVector< float64_t > As, const SGVector< float64_t > Bs)
virtual SGVector< index_t > decide_label_multiple_output(SGVector< float64_t > outputs, int32_t n_outputs)
static const int32_t REJECTION_LABEL
static T sum(T *vec, int32_t len)
Return sum(vec)
all of classes and functions are contained in the shogun namespace
virtual bool reject(SGVector< float64_t > outputs) const =0
CBinaryLabels * m_train_labels
labels used to train the submachines
CMulticlassOneVsRestStrategy()
static float64_t exp(float64_t x)
Binary Labels for binary classification.
class MulticlassStrategy used to construct generic multiclass classifiers with ensembles of binary cl...
virtual SGVector< int32_t > train_prepare_next()
static void qsort_backward_index(T1 *output, T2 *index, int32_t size)
EProbHeuristicType get_prob_heuris_type()