32 #ifndef QUADRATIC_TIME_MMD_H_
33 #define QUADRATIC_TIME_MMD_H_
282 return "QuadraticTimeMMD";
index_t m_num_samples_spectrum
EQuadraticMMDType m_statistic_type
virtual const char * get_name() const
float64_t compute_variance_under_alternative()
SGVector< float64_t > compute_biased_statistic_variance(int m, int n)
virtual ~CQuadraticTimeMMD()
The Custom Kernel allows for custom user provided kernel matrices.
float64_t compute_unbiased_statistic(int m, int n)
virtual float64_t compute_statistic()
void set_statistic_type(EQuadraticMMDType statistic_type)
SGVector< float64_t > fit_null_gamma()
float64_t compute_incomplete_statistic(int n)
index_t m_num_eigenvalues_spectrum
Kernel two sample test base class. Provides an interface for performing a two-sample test using a ker...
virtual EStatisticType get_statistic_type() const
SGVector< float64_t > sample_null_spectrum_DEPRECATED(index_t num_samples, index_t num_eigenvalues)
float64_t compute_variance_under_null()
SGVector< float64_t > sample_null_spectrum(index_t num_samples, index_t num_eigenvalues)
This class implements the quadratic time Maximum Mean Statistic as described in [1]. The MMD is the distance of two probability distributions and in a RKHS which we denote by .
void set_num_eigenvalues_spectrum(index_t num_eigenvalues_spectrum)
SGVector< float64_t > compute_unbiased_statistic_variance(int m, int n)
void set_num_samples_spectrum(index_t num_samples_spectrum)
virtual float64_t compute_p_value(float64_t statistic)
all of classes and functions are contained in the shogun namespace
The class Features is the base class of all feature objects.
virtual SGVector< float64_t > compute_variance()
SGVector< float64_t > compute_incomplete_statistic_variance(int n)
virtual float64_t compute_threshold(float64_t alpha)
float64_t compute_biased_statistic(int m, int n)