56 void CVariationalLikelihood::init()
 
   64         "The label of the data\n",
 
   68         "The distribution used to model the data\n",
 
virtual SGVector< float64_t > get_third_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const 
CLikelihoodModel * m_likelihood
virtual SGVector< float64_t > get_log_probability_f(const CLabels *lab, SGVector< float64_t > func) const =0
virtual bool supports_multiclass() const 
The class Labels models labels, i.e. class assignments of objects. 
virtual SGVector< float64_t > get_second_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const 
virtual ELikelihoodModelType get_model_type() const 
virtual SGVector< float64_t > get_log_zeroth_moments(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const =0
virtual SGVector< float64_t > get_predictive_variances(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const =0
virtual float64_t get_second_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const 
virtual float64_t get_second_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const =0
virtual SGVector< float64_t > get_first_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const 
virtual bool supports_regression() const 
virtual void set_likelihood(CLikelihoodModel *lik)
Class SGObject is the base class of all shogun objects. 
SGVector< float64_t > m_lab
virtual SGVector< float64_t > get_predictive_means(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const 
virtual SGVector< float64_t > get_predictive_variances(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const 
virtual bool supports_regression() const 
virtual bool supports_binary() const 
virtual SGVector< float64_t > get_log_probability_f(const CLabels *lab, SGVector< float64_t > func) const 
virtual SGVector< float64_t > get_log_probability_derivative_f(const CLabels *lab, SGVector< float64_t > func, index_t i) const 
virtual ~CVariationalLikelihood()
virtual ELikelihoodModelType get_model_type() const 
virtual SGVector< float64_t > get_log_zeroth_moments(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const 
all of classes and functions are contained in the shogun namespace 
virtual SGVector< float64_t > get_second_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const 
virtual float64_t get_first_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const 
virtual bool supports_binary() const 
virtual SGVector< float64_t > get_log_probability_derivative_f(const CLabels *lab, SGVector< float64_t > func, index_t i) const =0
virtual SGVector< float64_t > get_predictive_means(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const =0
virtual SGVector< float64_t > get_third_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const 
virtual float64_t get_first_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const =0
virtual bool supports_multiclass() const 
virtual SGVector< float64_t > get_first_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const 
The Likelihood model base class.