SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
VariationalLikelihood.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  */
31 
32 #include <shogun/lib/config.h>
34 
35 namespace shogun
36 {
37 
40 {
41  init();
42 }
43 
45 {
47 }
48 
50 {
52  m_likelihood=lik;
54 }
55 
56 void CVariationalLikelihood::init()
57 {
58  //m_likelihood will be specified by its subclass
59  //via the init_likelihood method
60  m_likelihood = NULL;
62 
63  SG_ADD(&m_lab, "labels",
64  "The label of the data\n",
66 
67  SG_ADD((CSGObject**)&m_likelihood, "likelihood",
68  "The distribution used to model the data\n",
70 }
71 
74  const CLabels* lab) const
75 {
76  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
77  return m_likelihood->get_predictive_means(mu, s2, lab);
78 }
79 
82  const CLabels* lab) const
83 {
84  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
85  return m_likelihood->get_predictive_variances(mu, s2, lab);
86 }
87 
89  const CLabels* lab, SGVector<float64_t> func,
90  const TParameter* param) const
91 {
92  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
93  return m_likelihood->get_first_derivative(lab, func, param);
94 }
95 
97  const CLabels* lab, SGVector<float64_t> func,
98  const TParameter* param) const
99 {
100  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
101  return m_likelihood->get_second_derivative(lab, func, param);
102 }
103 
105  const CLabels* lab, SGVector<float64_t> func,
106  const TParameter* param) const
107 {
108  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
109  return m_likelihood->get_third_derivative(lab, func, param);
110 }
111 
113 {
114  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
115  return m_likelihood->get_model_type();
116 }
117 
119  const CLabels* lab, SGVector<float64_t> func) const
120 {
121  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
122  return m_likelihood->get_log_probability_f(lab, func);
123 }
124 
126  const CLabels* lab, SGVector<float64_t> func, index_t i) const
127 {
128  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
129  return m_likelihood->get_log_probability_derivative_f(lab, func, i);
130 }
131 
134  const CLabels* lab) const
135 {
136  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
137  return m_likelihood->get_log_zeroth_moments(mu, s2, lab);
138 }
139 
142  const CLabels* lab, index_t i) const
143 {
144  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
145  return m_likelihood->get_first_moment(mu, s2, lab, i);
146 }
147 
150  const CLabels* lab, index_t i) const
151 {
152  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
153  return m_likelihood->get_second_moment(mu, s2, lab, i);
154 }
155 
157 {
158  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
160 }
161 
163 {
164  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
165  return m_likelihood->supports_binary();
166 }
167 
169 {
170  REQUIRE(m_likelihood != NULL, "The likelihood should be initialized\n");
172 }
173 
174 }

SHOGUN Machine Learning Toolbox - Documentation