SHOGUN  4.2.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
VariationalLikelihood.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  */
31 
32 #ifndef _VARIATIONALLIKELIHOODMODEL_H_
33 #define _VARIATIONALLIKELIHOODMODEL_H_
34 
35 #include <shogun/lib/config.h>
36 
37 #include <shogun/base/SGObject.h>
38 #include <shogun/labels/Labels.h>
40 
41 namespace shogun
42 {
43 
44 template<class T> class SGVector;
45 
55 {
56 public:
59 
60  virtual ~CVariationalLikelihood();
61 
68 
77 
93  SGVector<float64_t> s2, const CLabels* lab=NULL) const;
94 
110  SGVector<float64_t> s2, const CLabels* lab=NULL) const;
111 
116  virtual ELikelihoodModelType get_model_type() const;
117 
130  SGVector<float64_t> func) const;
131 
143  const CLabels* lab, SGVector<float64_t> func, index_t i) const;
144 
162  SGVector<float64_t> s2, const CLabels* lab) const;
163 
179  SGVector<float64_t> s2, const CLabels* lab, index_t i) const;
180 
196  SGVector<float64_t> s2, const CLabels* lab, index_t i) const;
197 
202  virtual bool supports_regression() const;
203 
208  virtual bool supports_binary() const;
209 
214  virtual bool supports_multiclass() const;
215 
226  SGVector<float64_t> func, const TParameter* param) const;
227 
239  SGVector<float64_t> func, const TParameter* param) const;
240 
252  SGVector<float64_t> func, const TParameter* param) const;
253 
260  virtual bool supports_derivative_wrt_hyperparameter() const=0;
261 
271 
272 protected:
274  virtual void init_likelihood()=0;
275 
278 
281 
283  virtual void set_likelihood(CLikelihoodModel * lik);
284 private:
285  void init();
286 };
287 }
288 #endif /* _VARIATIONALLIKELIHOODMODEL_H_ */
virtual SGVector< float64_t > get_third_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
ELikelihoodModelType
virtual SGVector< float64_t > get_first_derivative_wrt_hyperparameter(const TParameter *param) const =0
virtual SGVector< float64_t > get_variational_first_derivative(const TParameter *param) const =0
int32_t index_t
Definition: common.h:62
The class Labels models labels, i.e. class assignments of objects.
Definition: Labels.h:43
parameter struct
virtual float64_t get_second_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const
virtual SGVector< float64_t > get_first_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual void set_likelihood(CLikelihoodModel *lik)
virtual SGVector< float64_t > get_predictive_means(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const
double float64_t
Definition: common.h:50
virtual SGVector< float64_t > get_predictive_variances(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab=NULL) const
virtual SGVector< float64_t > get_log_probability_f(const CLabels *lab, SGVector< float64_t > func) const
virtual SGVector< float64_t > get_log_probability_derivative_f(const CLabels *lab, SGVector< float64_t > func, index_t i) const
virtual SGVector< float64_t > get_variational_expection()=0
virtual ELikelihoodModelType get_model_type() const
virtual SGVector< float64_t > get_log_zeroth_moments(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab) const
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
virtual SGVector< float64_t > get_second_derivative(const CLabels *lab, SGVector< float64_t > func, const TParameter *param) const
virtual float64_t get_first_moment(SGVector< float64_t > mu, SGVector< float64_t > s2, const CLabels *lab, index_t i) const
The Variational Likelihood base class.
virtual bool supports_derivative_wrt_hyperparameter() const =0
virtual void init_likelihood()=0
The Likelihood model base class.

SHOGUN Machine Learning Toolbox - Documentation